

背景 (E391a 実験)

- 新粒子 X は K 中間子崩壊でも観測される可能性がある
- 新粒子 X が<mark>擬スカラー</mark>だとすると $K_L \rightarrow \pi^0 \pi^0 X$ 崩壊が存在する と予測される

理論による予測 (hep-ph / 0509147) 4桁 $K_L \to \pi^0 \pi^0 X \quad (X \to \mu^+ \mu^-) \quad :BR \sim 5 \times 10^{-8}$ or $(X \to \gamma \gamma) \quad :BR < 5 \times 10^{-4}$ 大きくなる 可能性 Feynman S π^{0} diagram K^o

Csl 検出器

- γ線を Csl 結晶で検出する
- Csl (pure) 70 x 70 x 300 mm³ (16.2 X₀) 576本
- エネルギー分解能 σ/E = 2.0~2.5%(1GeV)

モンテカルロシミュレーション

- <2π⁰X MC> : Signal Event を評価
 X の質量を 214.3 MeV と仮定してK_L→π⁰π⁰X (X→γγ)
 シミュレーション
- 2. <3π⁰ MC> : Background を評価 実際の実験を想定した 3π⁰ シミュレーション
 (3 π⁰ も6γに崩壊するため 再構成がうまくいかないときに

Background になる) ミスコンビネーション

- **<**<2π⁰X MC>と <3π⁰ MC> を比較
 - → Signalを残しつつ Background を取り除く カット条件の探索(ミスコンビネーションの除去)
- **≤ <3**π⁰ MC> と <実験 Data> の比較

→ 解析の検証

解析に用いた Data set

 $rac{1}{2}\pi^{0}X$ MC (Signal)

- * 5 x 10⁷ K_L generate
 (without Accidental event)
- * Parameters

-
$$K_L \rightarrow \pi^0 \pi^0 X$$

三体崩壊 (Simple Phase Space)
X の質量を 214.3 MeV に設定

$$-X \rightarrow \gamma \gamma$$

BR : 100%

★ $3\pi^0$ MC (Background) * 5 x 10⁹ K_L generate (with Accidental event) * Data と同じ条件の シミュレーション - K_l → $3\pi^0$

BR : 100%

★ 実験 Data 10 run (全体の 0.5%)

E391a run-I Data (Apr / 2004)

- K_Lの分布を比較することによって MC の正しさを検証する (実験 Data と 3π⁰ MC を比較)
- 6γの不変質量分布は K_Lの質量付近で一致
- Zvertex は Decay Volume (280~500 cm)の範囲で一致
- Energy も一致

カット条件

- ◇ 再構成時に Signalを残しつつBackgroundを取り除く ためのカット条件(ミスコンビネーションの除去)
- Zvertex 280 ~ 500 cm (崩壊測定領域)
- △Z(2nd) > 10.5 cm
- P_T (運動量重心) < 0.011 GeV/c
- $\sigma^2 < 0.067 \, \text{GeV}^2$
- γ Position (20~R~90cm)

R: Beam 中心からの距離

$$\sigma^{2} = (\langle E \rangle - E_{\gamma})^{2}$$
 $\gamma Energy \pi^{0} に由来する最も$

の平均 エネルギーの低い γ

• Acceptance $(2\pi^0 X \text{ MC}) = \frac{\text{N accept 357 events (After Cut)}}{\text{N generate 5.0 x 10^7 events}}$

- Single Event Sensitivity (SES) $=\frac{1}{N_{KL} \times Acceptance(2\pi^{0}X(MC))}$ = 3.13 x 10⁻⁵
- Upper Limit (90% Confidence Level)
 = SES x 2.3 理論による予測
 = 7.2 x 10⁻⁵ BR < 5.0 x 10⁻⁴

まとめと今後の課題

- K_L→π⁰π⁰X (X→γγ) 崩壊の探索を行った
- Signalを残しBackgroundをより取り除くカット条件を決めた
- 3π⁰ MC と実験 Data を比較したところ すべての実験結果は consistent であった
- Acceptance $(2\pi^0 X MC) = 7.14 \times 10^{-6}$
- Upper Limit 7.2 x 10 ⁻⁵ (90% C.L.)

~ 今後の課題

世界最高感度!

Xの質量が214.3 MeV 以外の質量領域を探る *K_L→π⁰π⁰*γγ 直接崩壊の探索 新しいカット条件を加え Upper Limit を改善する

Backup Slide

Background Estimation

		Before Cut		After Cut	
		3π ⁰ MC	Data	3π ⁰ MC	Data
		225.4±15.0	225	0	<0.4*
(2	567.3±23.8	582	5.5±2.3	3
	3	<mark>2685.5</mark> ±51.8	2598	19.9±4.5	17
(.	4	795.9±28.2	741	13.4±3.7	12

(* 90% Confidence Level)

