暗黒物質の対消滅を媒介する extra-U(1) gauge bosonの探索

山形大学 博士前期課程 物理学専攻 クォーク核物理学 加藤 泉

 $\gamma 線観測衛星INTEGRALで銀河中心から飛来する$ $大量の511KeV-<math>\gamma$ 線が観測された(2003年) [astro-ph/0309484] $\rightarrow 10^{43}$ 個/秒の陽電子生成に相当

→既知の天体現象では説明が困難

◎素粒子論的な一つの可能性[astro-ph/0404490,hep-ph/0305261]

- 数MeV/c²~100MeV/c²の暗黒物質(dm)の対消滅を仮定
- dm+dm→X→e⁺+e⁻(e⁺対消滅→γ+γ) ➡★量のγが生成可能
- ◎ 暗黒物質の対消滅を媒介するXの候補:U-boson
 - 大統一理論で必要になるextra-U(1)対称性起因のGauge boson
 - dmが軽い場合U-bosonも軽いことが予想されている[hep-ph/0702176]

研究の目的

- 質量が数MeV/c²~数百MeV/c²領域における
 短寿命の新粒子(U-boson)を探索
- ◎ KEK-PS E391a実験(K_L→π⁰v⊽探索実験)の
 AI標的データを利用

 $n + AI \rightarrow U + \cdots$ $U \rightarrow e^+e^- \text{ or } \gamma\gamma$

Eventの 再構成 方法

U-bosonの崩壊モードU→e⁺e⁻ or үү

@CsIで各粒子のエネルギー($E_1 E_2$)と位置 ($r_1 = (x_1 y_1), r_2 = (x_2 y_2)$)を測定する。

◎探索したい粒子(U-boson)を短寿命と仮定し、その崩壊点をAlターゲットの位置と仮定する。
(下図はターゲットからCsIまでの距離をdとしている)

◎もとの粒子の質量を再構成させる。

$$\implies \mathsf{M} = (\mathsf{E}_1 \cdot \mathsf{E}_2 - \mathsf{P}_1 \cdot \mathsf{P}_2)^{1/2}$$

上限値の計算

※π⁰断面積(4mbarn)と比較することでU-boson断面積の上限値を決める。

中性モードの上限値 10 全てのcutを of Event Upper Limit of _{ou}(bam) 01 01 01 01 1 入れたグラフ Excluded region 残った数 . 210 15362events $\sigma_{\rm H} < 10^{-5}$ barn **※青は** Upper limit 10 10 1 M^{0.5} 0/6 GeV/C²) 0.1 0.2 0.3 0.4 0 質量bin 10 σ_{π^0} (=4 × 10⁻³) ごとの 10 × Acceptance × イベント数 $\overline{N}_{\pi^{0}}(=14945)$ の上限値 10 0.6 0.7 Δ 0.1 0.2 0.3 0.4 0.5 M (GeV/c²) No. of Event ceptance(A(m_x)=1) 残った π⁰ イベント数 of Event Acceptance補正係数(m_u) (中性モード) イベント数 π^0 :14945events (40MeV/bin) . NO.10 Relativ 10 10 MC simulation 10 10 Data with Neutral-mode cut 1 1 0.4 0.5 0.6 0.7 M_{2cluster}(GeV/C²) 0.6 0.1 0.2 0.3 0 0.1 0.2 0.3 0.4 0.5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 $M_{2cluster}(GeV/c^2)$ Mass(GeV/c²)

hep-ph/0607318, hep-ph/0607094, hep-ph/0408357

まとめ

@KEK-PS E391a実験のAI標的Runデータを使い、 U-boson→e⁺e⁻ or yy を想定した0Mev/c²~700MeV/c²の質量領域で 解析を試みた。

@ 荷電モード(P_T>200MeV/c) $\Rightarrow \sigma_U < 10^{-5} \text{ barn}$ 中性モード(P_T>160MeV/c)

@Coupling constant(f_{qU})は10⁻¹以下と求められた。 (他の実験より得られるcoupling constant にはおよそ一桁~二桁届かなかった) Back UP

Coupling constant

<u>MC</u>との比較

Eventの 再構成

中性モード

$$m = \{(E_{1}+E_{2})^{2}-(Px_{1}+Px_{2})^{2}-(Py_{1}+Py_{2})^{2}-(Pz_{1}+Pz_{2})^{2}\}^{1/2}$$

$$t = t = U, \quad (Px_{1},Py_{1},Pz_{1}) = \begin{cases} \frac{E_{1}x_{1}}{(x_{1}^{2}+y_{1}^{2}+d^{2})^{1/2}}, \frac{E_{1}y_{1}}{(x_{1}^{2}+y_{1}^{2}+d^{2})^{1/2}}, \frac{E_{1}d}{(x_{1}^{2}+y_{1}^{2}+d^{2})^{1/2}} \end{cases}$$

$$(Px_{2},Py_{2},Pz_{2}) = \begin{cases} \frac{E_{2}x_{2}}{(x_{2}^{2}+y_{2}^{2}+d^{2})^{1/2}}, \frac{E_{2}y_{2}}{(x_{2}^{2}+y_{2}^{2}+d^{2})^{1/2}}, \frac{E_{2}d}{(x_{2}^{2}+y_{2}^{2}+d^{2})^{1/2}} \end{cases}$$

荷電モード

$$m = \{ (E_1 + E_2)^2 - (Px_1 + Px_2)^2 - (Py_1 + Py_2)^2 - (Pz_1 + Pz_2)^2 \}^{1/2}$$

$$t = t = U, \quad (Px_1, Py_1, Pz_1) = \begin{cases} \frac{(E_1^2 - m_e^2)^{1/2}x_1}{(x_1^2 + y_1^2 + d^2)^{1/2}}, \frac{(E_1^2 - m_e^2)^{1/2}y_1}{(x_1^2 + y_1^2 + d^2)^{1/2}}, \frac{(E_1^2 - m_e^2)^{1/2}d}{(x_1^2 + y_1^2 + d^2)^{1/2}} \end{cases}$$

$$(Px_2, Py_2, Pz_2) = \begin{cases} \frac{(E_2^2 - m_e^2)^{1/2}x_1}{(x_2^2 + y_2^2 + d^2)^{1/2}}, \frac{(E_2^2 - m_e^2)^{1/2}y_1}{(x_2^2 + y_2^2 + d^2)^{1/2}}, \frac{(E_2^2 - m_e^2)^{1/2}y_1}{(x_2^2 + y_2^2 + d^2)^{1/2}} \end{cases}$$

MCとの比較(荷電モード)

黒:DATA、赤:コア中性子、青:K→γγ、緑:Ke3、水:Kµ3、桃:全MC

荷電/中性モード分類

•Position matching CV(PMCV) 54.6ns~63.4ns,1~3MeV

2粒子選択

- •CC02 73.6ns~94.0ns, 2MeV
- •CC03 1.5MeV
- •CC04 91.0ns~99.5ns,0.8MeV
- •CC04scinti layer 93.0ns \sim 99.2ns,0.7MeV
- •CC05 2.0MeV
- •CC05scinti layer 0.7MeV
- •CC06 81.7ns~97.4ns,2.0MeV
- •CC07 94.5ns~126.0ns,25.0MeV
- •FB 79.5ns~92.4ns,1.0MeV
- •Inner CV 57.3ns~64.5ns,0.1MeV
- •MB 69.4ns~87.0ns,5.0MeV
- •BAveto 0
- •dt -9.117ns~6.129ns
- •Sandwich 65.2ns~76.2ns,2MeV •BCV 74.7ns~89.7ns,1.0MeV
- •BHCV 0.1MeV

EM shower選択

- •RMS <5.9
- •nergy ratio>0.85
- •TDI<3.0
- •gnid>0.3
- •∆theta>-40.0
- •Fusion>0.5
- •MIP cluster(1),(2) 115MeV~250MeV

Kinematics cut

- •R12>23.5cm •acp>20°
- •Erat>0.045
- •Pt>0.2GeV
- •Rcut CsI radius<80.5cm
 - and -17.5cm<gamx<17.5cm,
 - -17.5cm<gamy<17.5cm

Charged mode optimize cut(P_T>0.2GeV)

荷電/中性モード分類

•Outer CV 51.7s~67.2ns,0.1MeV •Position matching CV(PMCV) 54.6ns~63.4ns,1~3Me

2粒子選択

- •CC02 83.6ns~95.0ns, 2MeV
- •CC03 1.5MeV
- •CC04 90.9ns~100.0ns,0.8MeV
- •CC04scinti layer 91.9ns \sim 100.51ns,0.7MeV
- •CC05 2.0MeV
- •CC05scinti layer 0.7MeV
- •CC06 81.7ns~94.6ns,2.0MeV
- •CC07 93.9ns~120.9ns,25.0MeV
- •FB 79.0ns~92.4ns,1.0MeV
- •Inner CV 48.6ns~67.0ns,0.1MeV
- •MB 66.7ns~92.4ns,5.0MeV

•BAveto 0

- •dt -9.117ns~6.129ns
- •Sandwich 60.4ns \sim 76.6ns,2MeV
- •BCV 69.4ns~92.4ns,1.0MeV
- •BHCV 0.1MeV

EM shower選択

- •RMS <5.3
- •nergy ratio>0.85
- •TDI<3.0
- •gnid>0.3
- •∆theta>-40.0
- •Fusion>0.5
- •MIP cluster(1),(2) 115MeV~250MeV

Kinematics cut

- •R12>23.5cm •acp>20°
- •Erat>0.04
- •Pt>0.16GeV
- •Rcut CsI radius<80.5cm
 - and
 - -17.5cm<gamx<17.5cm,
 - -17.5cm<gamy<17.5cm

Neutral mode optimize $cut(P_T>0.16GeV)$

Selection of neutral or charged

Outer CV 47.3ns~68.7ns,0.1MeV
Position matching CV(PMCV)
54.6ns~63.4ns,1~3MeV

Selection of two particle

- •CC02 78.3ns~96.0ns, 2MeV
- •CC03 1.5MeV
- •CC04 84.8ns~101.9ns,0.8MeV
- •CC04scinti layer 83.5ns~102.2ns,0.7MeV
- •CC05 2.0MeV
- •CC05scinti layer 0.7MeV
- •CC06 70.6ns~97.9ns,2.0MeV
- •CC07 75.1ns~129.7ns,25.0MeV
- •FB 59.0ns~118.6ns,1.0MeV
- •Inner CV 45.1ns~70.3ns,0.1MeV
- •MB 57.8ns~95.6ns,1.0MeV

•BAveto 0

- •dt -9.117ns~6.129ns
- •Sandwich 51.5ns~81.1ns,2MeV
- •BCV 59.5ns~95.3ns,0.5MeV
- •BHCV 0.1MeV

•Csl

Selection of EM shower

- •RMS < 5.0
- •nergy ratio>0.9
- •TDI<3.0
- •gnid>0.5
- •∆theta>-20
- •Fusion>0.5
- •MIP cluster(1),(2) 115MeV~250MeV

Kinematics cut

- •R12>25.0cm
- •Erat>0.3
- •acp>20°
- •Pt>0.1GeV
- •Rcut Csl radius<80.5cm
 - and
 - -17.5cm<gamx<17.5cm,
 - -17.5cm<gamy<17.5cm

Experime

10.1

Selection of neutral or charged

Outer CV -3.4ns~18.0ns,0.1MeV
Position matching CV(PMCV)
2.3ns~8.8ns,1~3MeV

Selection of two particle

- •CC02 -15.0ns~2.7ns, 2MeV
- •CC03 1.5MeV
- •CC04 1.4ns~18.5ns,0.8MeV
- •CC04scinti layer 2.17ns \sim 20.87ns,0.7MeV
- •CC05 2.0MeV
- •CC05scinti layer 0.7MeV
- •CC06 8.35ns~35.65ns,2.0MeV
- •CC07 11.5ns~66.1ns,25.0MeV
- •FB 7.3ns~66.9ns,1.0MeV
- •Inner CV -6.9ns \sim 18.3ns,0.1MeV
- •MB 4.1ns~41.9ns,1.0MeV

•BAveto 0

- •dt -9.117ns~6.129ns
- •Sandwich -0.6ns \sim 29.0ns,2MeV
- •BCV 9.1ns~44.9ns,0.5MeV
- •BHCV 0.1MeV

•Csl

Selection of EM shower

- •RMS < 5.0
- •nergy ratio>0.9
- •TDI<3.0
- •gnid>0.5
- •∆theta>-20
- •Fusion>0.5
- •MIP cluster(1),(2) 115MeV~250MeV

Kinematics cut

- •R12>25.0cm
- •Erat>0.3
- •acp>20°
- •Pt>0.1GeV
- •Rcut CsI radius<80.5cm
 - and
 - -17.5cm<gamx<17.5cm,

MC

-17.5cm<gamy<17.5cm

MCとの比較

No. of Event Ke3 10 10 ³-10 ²-10 0.2 0.3 0.1 0.4 0.8 0.5 0.6 0.7 0.9 0 $P_{T}(GeV/c)$

Ρ_T

- e⁺e⁻ analysis (Charged mode) →__>0.2GeV/c
- 2γ analysis (Neutral mode)

Acceptance

Feldman Cousins 統計

TABLE IV. 90% C.L. intervals for the Poisson signal mean μ , for total events observed n_0 , for known mean background b ranging from 0 to 5.

n₀\b	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0
0	0.00, 2.44	0.00, 1.94	0.00, 1.61	0.00, 1.33	0.00, 1.26	0.00, 1.18	0.00, 1.08	0.00, 1.06	0.00, 1.01	0.00, 0.98
1	0.11, 4.36	0.00, 3.86	0.00, 3.36	0.00, 2.91	0.00, 2.53	0.00, 2.19	0.00, 1.88	0.00, 1.59	0.00, 1.39	0.00, 1.22
2	0.53, 5.91	0.03, 5.41	0.00, 4.91	0.00, 4.41	0.00, 3.91	0.00, 3.45	0.00, 3.04	0.00, 2.67	0.00, 2.33	0.00, 1.73
3	1.10, 7.42	0.60, 6.92	0.10, 6.42	0.00, 5.92	0.00, 5.42	0.00, 4.92	0.00, 4.42	0.00, 3.95	0.00, 3.53	0.00, 2.78
4	1.47, 8.60	1.17, 8.10	0.74, 7.60	0.24, 7.10	0.00, 6.60	0.00, 6.10	0.00, 5.60	0.00, 5.10	0.00, 4.60	0.00, 3.60
5	1.84, 9.99	1.53, 9.49	1.25, 8.99	0.93, 8.49	0.43, 7.99	0.00, 7.49	0.00, 6.99	0.00, 6.49	0.00, 5.99	0.00, 4.99
6	2.21,11.47	1.90,10.97	1.61,10.47	1.33, 9.97	1.08, 9.47	0.65, 8.97	0.15, 8.47	0.00, 7.97	0.00, 7.47	0.00, 6.47
7	3.56,12.53	3.06,12.03	2.56,11.53	2.09,11.03	1.59,10.53	1.18,10.03	0.89, 9.53	0.39, 9.03	0.00, 8.53	0.00, 7.53
8	3.96,13.99	3.46,13.49	2.96,12.99	2.51,12.49	2.14,11.99	1.81,11.49	1.51,10.99	1.06,10.49	0.66, 9.99	0.00, 8.99
9	4.36,15.30	3.86,14.80	3.36,14.30	2.91,13.80	2.53,13.30	2.19,12.80	1.88,12.30	1.59,11.80	1.33,11.30	0.43,10.30
10	5.50,16.50	5.00,16.00	4.50,15.50	4.00,15.00	3.50,14.50	3.04,14.00	2.63,13.50	2.27,13.00	1.94,12.50	1.19,11.50
11	5.91,17.81	5.41,17.31	4.91,16.81	4.41,16.31	3.91,15.81	3.45,15.31	3.04,14.81	2.67,14.31	2.33,13.81	1.73,12.81
12	7.01,19.00	6.51,18.50	6.01,18.00	5.51,17.50	5.01,17.00	4.51,16.50	4.01,16.00	3.54,15.50	3.12,15.00	2.38,14.00
13	7.42,20.05	6.92,19.55	6.42,19.05	5.92,18.55	5.42,18.05	4.92,17.55	4.42,17.05	3.95,16.55	3.53,16.05	2.78,15.05
14	8.50,21.50	8.00,21.00	7.50,20.50	7.00,20.00	6.50,19.50	6.00,19.00	5.50,18.50	5.00,18.00	4.50,17.50	3.59,16.50
15	9.48,22.52	8.98,22.02	8.48,21.52	7.98,21.02	7.48,20.52	6.98,20.02	6.48,19.52	5.98,19.02	5.48,18.52	4.48,17.52
16	9.99,23.99	9.49,23.49	8.99,22.99	8.49,22.49	7.99,21.99	7.49,21.49	6.99,20.99	6.49,20.49	5.99,19.99	4.99,18.99
17	11.04,25.02	10.54,24.52	10.04,24.02	9.54,23.52	9.04,23.02	8.54,22.52	8.04,22.02	7.54,21.52	7.04,21.02	6.04,20.02
18	11.47,26.16	10.97,25.66	10.47,25.16	9.97,24.66	9.47,24.16	8.97,23.66	8.47,23.16	7.97,22.66	7.47,22.16	6.47,21.16
19	12.51,27.51	12.01,27.01	11.51,26.51	11.01,26.01	10.51,25.51	10.01,25.01	9.51,24.51	9.01,24.01	8.51,23.51	7.51,22.51
20	13.55,28.52	13.05,28.02	12.55,27.52	12.05,27.02	11.55,26.52	11.05,26.02	10.55,25.52	10.05,25.02	9.55,24.52	8.55,23.52

