Dynamic Nuclei Polarization

from the Nucleon Structure to Medical Applications

W. Meyer Ruhr-Universität Bochum (Germany)

Yamagata March 12, 2009

Tiny and Large World

Quarks and Leptons build our World

Deeper Insight into Matter

Generally:

the higher the beam energy or the smaller the wavelength, the **more structural details** can be resolved

 \Rightarrow high energy accelerators

High Particle Energies ?

 Cosmic rays up to 10¹²eV
 uncontrollable accidentally low flux different energies cheap

 Accelerators (man made)
 controllable adjustable energies expensive

What is SPIN ?

What is SPIN ?

Internal angular momentum of particles
Picture: Spinning top which not tumbles during rotation
➡ but limits
description only by quantum mechanics

With Spin there is a magnetic moment, which acts in such a way, that particles in a magnetic field can be considered as small magnets, which can be aligned.

Proton has SPIN (fermion), but is composed from further objects with Spin: Quarks and gluons – How do their Spins contribute?

→ Polarized Target (our favoured apparatus)

Picture: Particle with SPIN, that rotates around its center of gravity **Precise description:** Only in the framework of quantum mechanics

W. Pauli was against the picture of a rotating electron "It took quite a while, until N. Bohr was successfully, to convince his very critical pupil (W. Pauli) from the ingenuity of this new concept." (Phys.-Blätter, April 2000)

for electron, proton, neutron (Spin 1/2 - particles) 2 discrete numbers in a magnetic field (orientation quantization) $+\frac{1}{2}\hbar:$ $-\frac{1}{2}\hbar:$ B-magnetic field e.g.

Particles with Spin can be manipulated with magnetic fields (analogy: magnetic needle (compass) in the earth magnetic field)

Polarization

= Orientation of Spins in a magnetic field

Without magnetic field: Randomly orientated spins

With magnetic field: Orientation of spin

All Spins in magnetic field direction : 100 % Polarization

Change of polarization (e.g. destruction by HF-field) = energy change in the spin system measured by the Nuclei Magnetic Resonance (NMR) method

 ⇒ 'visibility` of the particles with spin (mainly protons)
 by Magnetic
 Resonance Imaging (MRI)

D	<mark>ream:</mark> 100% polariz	ation of a S	pin ensemble)				
In	reality not so easy t	o realize						
In	terplay between							
	polarizing force	\triangleq	magnetic fie	eld B				
	and							
depolarizing force		\triangleq	thermal mot	tion of Spin particles				
		(temperature			e T – relaxation)			
			Ē					
E	xamples:							
	$B = 10^{-5}$ Tesla	<pre>(earth magnetic field) (room temperature) (superconducting magnets) (refrigerators)</pre>		-				
	$T = 25^{\circ}$ Celsius			$P = 10^{-12}\%$				
	B = 5 Tesla							
	$T = -273^{\circ}$ Celsius			P = 100%NMR (particle physics)				
		(
	$D = 1 \text{ lesia}$ $T = 37^{\circ} \text{ Celsius}$	(superconducting magnets)		$\mathbf{P} =$	10 ⁻⁸ % MRI (medicine)			
		(body tempe						

Dynamic Polarized Solid Targets Method:

- Production of a high degree of polarization in a suitable material with a high content of polarizable nucleons and 'free' electrons (radicals) by means of
- high magnetic fieldextremely low temperature

$$P \sim \frac{\mu B}{kT}$$

- microwave irradiation \rightarrow dynamic nuclei polarization (DNP)
- Polarization detection by means of nuclear magnetic resonance technique (NMR)

Additional qualities of target materials

- degree of polarization resistant against radiation damage
- easy handling quick target material exchange or refreshment of the polarization

Favor Materials for DNP Targets

	Name	Dopant	f	Radiation hardness	Polarization
_	Butanol, C ₄ H ₉ OH	chemically	0.13	moderate	80-85%
_	D-Butanol, C ₄ D ₉ OD	chemically	0.24	moderate	80%
_	Ammonia ¹⁴ NH ₃ , ¹⁵ NH ₃	radiation	0.17	high	> 90%
-	Lithium Deuteride ⁶ LiD	radiation	0.50	very high	50-60%

Butanol with Porphyrexide

Butanol with CrV complex

Ammonia

LiD or LiH

Polarized Neutrontarget

≻ Deuteron as Spin 1-particle

➤ ³He as Spin 1/2-particle

³He-gas highly polarizable (P ~ 50%) by means of dynamic methods (laser) at room temperature (300 K) and small magnetic field (1 mT) in glass cells

polarized → ³He easily transportable

Deep inelastic scattering experiments e.g. at SLAC

SPIN–OFF: Polarized ³He-Gas

From basic research

to

Structure function g₁ⁿ, g₂ⁿ
 (SLAC, DESY, JLab)

 Electrical formfactor G_{En} (Mainz, MIT - Bates, JLab)

Modern Lungdiagnostics

Air (77% nitrogen 21% oxygen 2% +argon, ⁴He ...) > no MRI-signal

Question:

Information about lung and its 'airchannels' pulmonary alveoli (about 400 million diameter: 0.2 mm area: ~10 m²)

Inhale polarized ³He-gas as patient in a MRI-tomograph → ³He-MRI ⇒ picture of lung

– Lung diagnostics by Magnetic Resonance Imaging (MRI) ³He spin density MRI

W. Heil, Univ. Mainz

inhalable beta blocker asymptomatic asthmatic

T. Altes et al., University of Virginia

before

after

Polarized ³He

Particle Physics: State-of-the-Art ³He-Targets in Mainz and JLab

Medical use:

All technical problems solved

- Central ³He production e.g. in Mainz (~80 bar · liter/day P=60%)
- Storage and transport ($T_1 > 100h$), polarimetry, ³He-recovery

$DNP \Rightarrow Medical Diagnostics$ Polarized solid targets – DNP \Rightarrow SPIN as ,Spin-off*

 $H_2O = proton spin$ $\Rightarrow e.g. damage of meniscus$

³He = neutron spin \Rightarrow lung damage

DNP for all nuclei with spin H, D, ⁶Li, ¹⁴N, ¹⁵N, ¹³C ... $C_4 H_9 OH \longleftarrow$

(Butanol)

natural abundance of ${}^{13}C: 1.1\%$

DNP ⇒ Medical Diagnostics

¹³C-isotope marker, to detect molecules from metabolic processes with NMR/MRI-method

♦ carbohydrate-metabolism → pyruvic acid (C_3H_3OH)

H O O | || // H - C - C - C | // H OH

Limits:

¹³C has low sensitivity \longleftrightarrow DNP (P_{13c} ~ 0.0008% @ 300K, 9.4T) (P_{13c} ~ 10-35% @ 1.2K, 3.5T) \downarrow at low temp. \checkmark

Decisive Technical Step:

Dissolution of a frozen polarized sample at ~ 1 K with hot H_2O

Transfer of the hyperpolarized liquid out of the low temperature refrigerator to the MRI-apparatus

and the liquid is still polarized during the injection (to animals) (speed is needed!)

Ardenkjaer-Larsen et al., Proc. Math. Acad. Sci. USA 100 (2003) 10158 J. Wolber et al., NIM A526 (2004) 173

DNP-Polarizer

Apparatus e.g. EPF Lausanne/PSI

- > Refrigerator in a standard NMR-magnet 3.35 T (\emptyset = 88 mm)
- ➤ Base temperature ~ 1.1 K with low liquid ⁴He-consumption (~ 60 l/week)
- > 94 GHz microwave source ~ 50 mW
 → DNP
- > Quick sample loading and fast polarization build-up in ~ 1 h

Dissolution Procedure

- DNP-insert replaced by 'dissolution' insert
- Dissolution of the solid material by water (some bar at ~ 150°C)
- Dissolution exit directly connected with the infusion apparatus

Liquid Sample Transfer

Dissolution, transfer and infusion in ~ 15 s
 (lost ~ 50% of the starting polarization)

Remaining enhancement factor ~ 5000-10000

> DNP and MRI at different magnetic fields

Compound	Mol M	Solvent	H ₂ 0 (vol.%)	TEMPO (mM)	DNP %	τ _{BU} , sec.	A _{liq} ti mes	DT sec.	τ _{reb} , sec.
1-13CNa acotato	4.5	D2O/cthd6	67	33	73	360	3000	15	21
1-13CNa puruvate	2.0	D2O/cthd6	82	33	6.9	560	-	-	-
¹³ Curca	8.0	glycarol	0	33	8.2	1200	•	-	-
1-13Cglucose	4.5	D2O/ethdo	67	33	5.9SA	2500	~19	6	1.0
1-13Cglycine	1.5	D20/gld8	40	50	9.0	780	2500	15	15
⁶ LiCI	15.0	D2O/ethd6	67	33	7.0	410	•	-	-
15Nurca	8.0	glycerol	0	16	3.0	6360	6000	20	94
15N cholineCI	6.0	D_0/gld8	40	50	3.5	4700	5000	20	74

Hyperpolarization by DNP of Molecules in Solution

Ardenkjaer-Larsen JH et al, PNAS 103(30) (2003) courtesy of GE Healthcare

Conventional MR

SNR ≈ 5 (37 h, 168 000 excitatons)

амаларий разили, россия ималария ини ини ини онистратичной области области со разловие и области от разловие и Али 1980 ма 1980 Разли 1980 ма 1

Hyperpolarized MR

SNR=400 (0.8 s, 1 excitaton) **enhancement ~ 4400**

180 170 160 150 140 130 120 110 100 90 80 70 ppm

Pioneers: Amersham/Health Malmö now GE Healthcare

urea (CH₄N₂O) → urea cycle (Krebs – Henseleit cycle) → Final product of egg metabolism → liver → blood → kidney → urine Sample: urea (99% ¹³C marked) | Glycerol + Tritylradical

¹³C coronal pictures of a rat (a) after 1 s and (b) 3 s after injection of ¹³C-urea

Metabolism Pictures from a Rat Tumor with Hyperpolarized [1-¹³C]Pyruvat

Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate, F.A. Gallagher et al. nature, Vol 453, 12 June 2008.

Bochum / GE Healthcare

2) Polarization enhancement of ¹³C in C₃H₃OH + AH 11501 3.35 T / 1.2 K \rightarrow 5.0 T / 1.0 K P_{13c}: 35% \rightarrow 75%

→ in vivo MRI →
 enhancement factor:
 50000

Focus:

 1) deut. pyruvic acid: C₃D₃OH + Triphenylmethyl radical (Trityl radical) AH 11501
 → DNP-Mechanism (Solid State Effect - EST)

Summary

Even after 45 years of DNP polarized solid targets for elementary particle physics – (in the meantime often written off) – the future is more than promising, especially by the new medical or biochemical applications

Dynamic Nuclear Polarization Symposium 2007

The University of Nottingham

Theory – Hardware – Applications – Radicals

Proc. in Appl. Magn. Reson (2008)