Development of polarized polymer targets

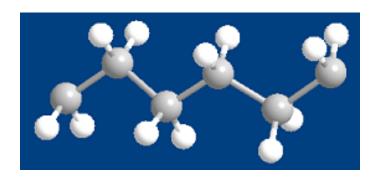
Wang Li

Donghua Uni. China(PRC)

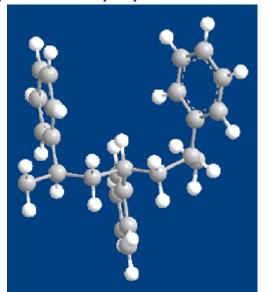
Contents

- Introduction to both materials
 Poly(Ethylene-D4) CD2
 Styrene-D8, polymerized C8D8
- 2. Doping Method for DNP

Radiation-doped CD₂
TEPO doped CD₂


- 3. Current Research

 Trityl radical doped C₈D₈


 TEPO doped C₈D₈
- 4. Summary and outlook

Introduction to both material

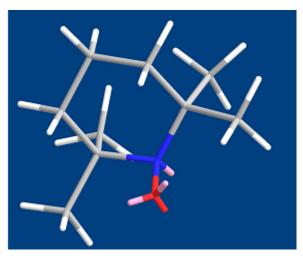
Poly(Ethylene-D4) CD2

Styrene-D8, polymerized C₈D₈

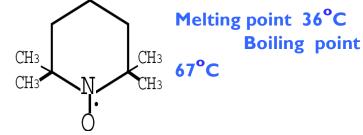
dilution factor

$$f = \frac{8 \text{ from D}}{24 \text{ from C} + 8 \text{ from D}} = 0.25$$

$$f = \frac{16 \text{ from D}}{96 \text{ from C} + 16 \text{ from D}} = 0.14$$

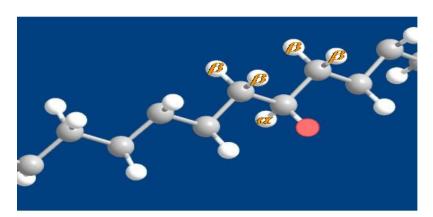

Merits of CD₂, C₈D₈

- 1. High purity of D 0.98, 0.99
- 2. D with spin 1 and C with spin 0
- 3. Short polarization build-up time 3-10 hours
- 4. Low radiation damage
- 5. Solid State at room temperature


form thin targets for low-energy experiments

Doping methods for DNP

- Mechanism of Dynamic Nuclear Polarization Paramagnetic centers are needed
- Chemical (Tempo radical) doping of CD2



Tempo (stable free radical)

(2,2,6,6-tetramethyl-piperidine-1-oxyl)

Irradiation with electron beam

'aramagnetic center for DNP

ESR linewidth and shape

Zeeman Energy of a free electron

$$E_Z = -g_e \mu_B \vec{S} \, \bar{7} \vec{B}$$

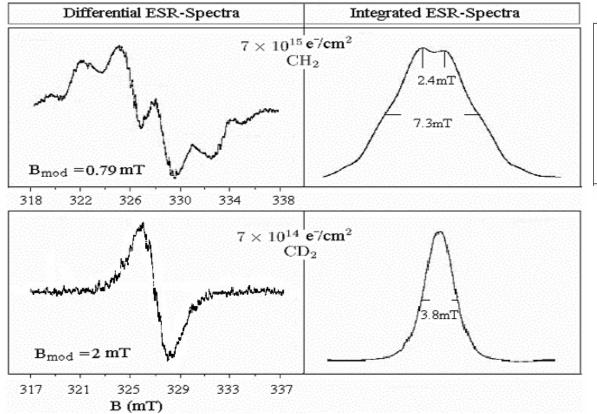
> Contributions to the Electron Zeeman linewidth

$$\Delta E_{tot} = \mu_{B} (\vec{S}_{\xi}^{\dagger} \hat{g}_{\xi}^{\dagger} \vec{R}) + (\vec{S}_{\xi}^{\dagger} \vec{A}_{\xi}^{\dagger} \vec{I}) + E_{D}$$

$$in \text{hom}$$

Hom. → Diplo-Diplo interaction → between electrons

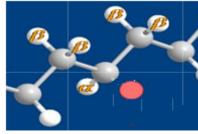
Inhom. → Hyperfine interaction → magnetic nuclei → indep. of Bo


Inhom. → g-factor anisotropy → crystal field → dep. of Bo

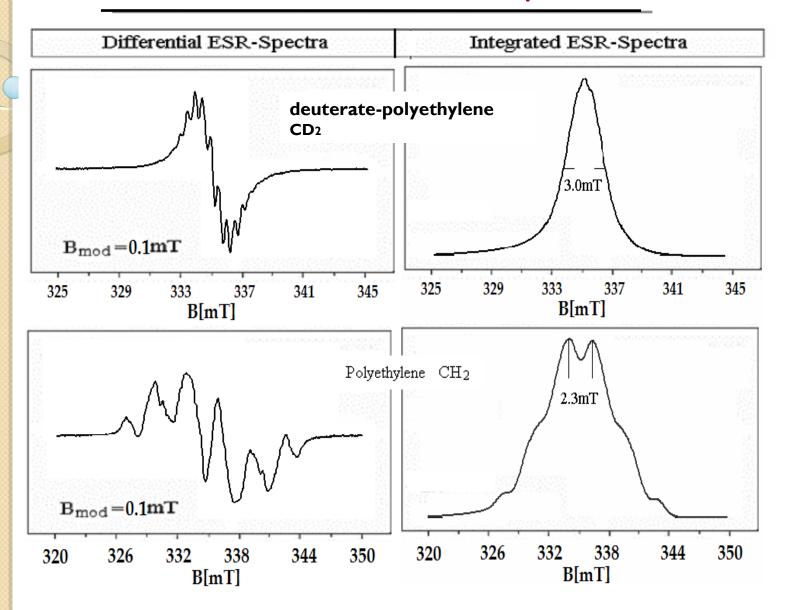
Polarization at 2.5T/0.3K Electron: 99.9% Deuteron: 0.17%

Transfer high electron polarization to deuteron polarization

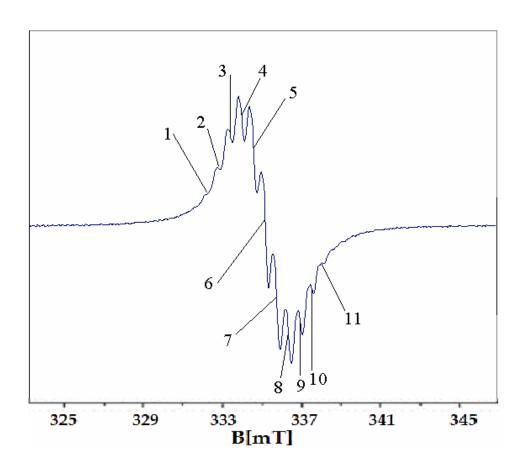
$$\Delta E_{HFS}$$
 : ΔE_{D}


EPR spectra of irradiated CH2 and CD2 at 77K

318 322 326 330 334 338 B (mT)


- According to HFS, 6-line pattern conresponds to 5 adjacent H, $m = \frac{\circ}{\tau}, \frac{\circ}{\tau}, \frac{\circ}{\tau}, \dots = \frac{\circ}{\tau}$
- \triangleright 2.4mT splitting of HFS interval belongs to H α
- Splitting broadening 1.56mT mainly belongs to electron dipolar-dipolar interaction

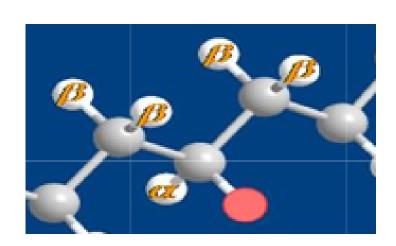
Alkyl-radical



$$\gamma_{\text{c-c}} = 1.54 \times 10^{-10} \text{ m}$$

 $\gamma_{\text{c-H}} = 1.11 \times 10^{-10} \text{ m}$

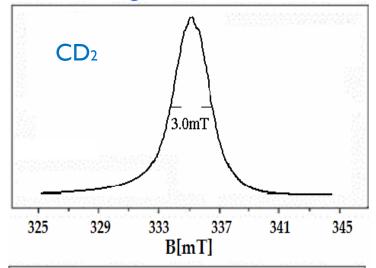
Irradiated CD2 and CH2 spectra

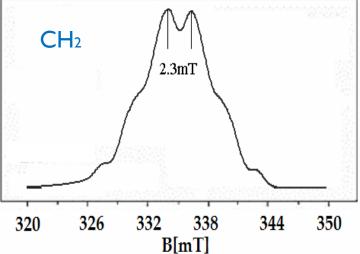


EPR spectra of Radiation-doped CD₂

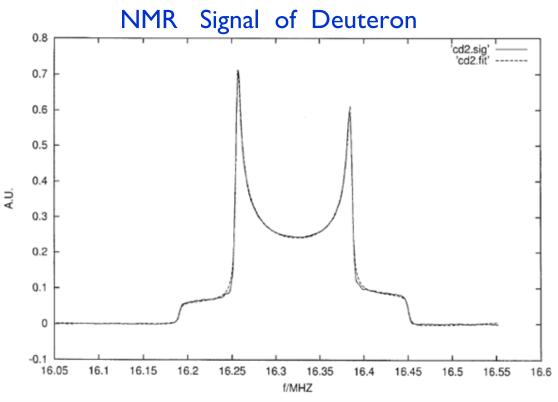
According to HFS, II-line pattern corresponds to 5 adjacent D, $m = 5, 4, 3 \dots - 5$

EPR spectra of Radiation-doped CH₂

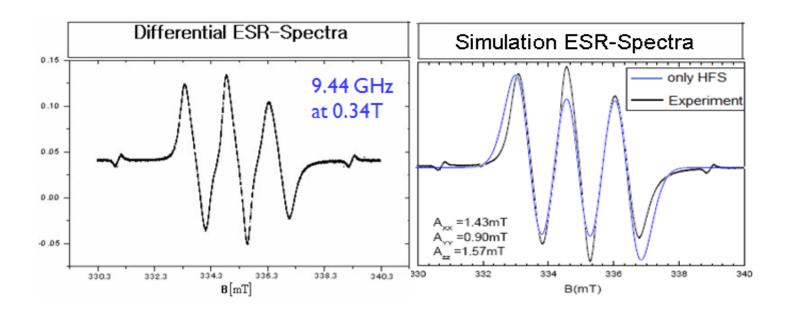


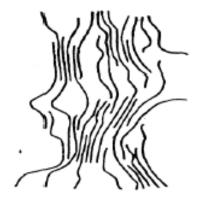

➤The unpaired electron interacts with

than the four hydrogen on β - site

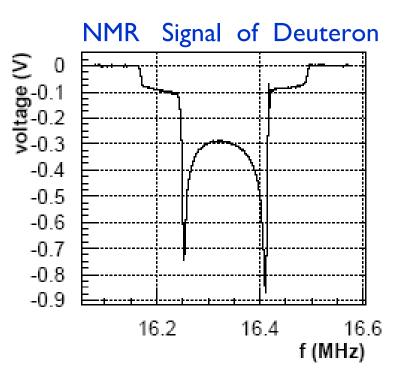

the one hydrogen on α- site stronger

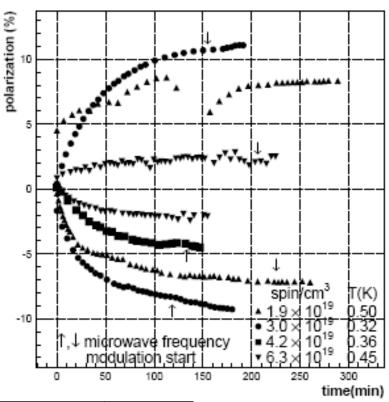
Integrated EPR lines


Polarization of radiation-doped CD₂


dose $[e^-/{ m cm}^2]$	spin concentrantion $[\mathrm{e/g}]$	irradiation Temp. $\left[\mathrm{K} \right]$	positive $\operatorname{Pol}[\%]$	negative Pol. $[\%]$
2.4×10^{16}	6.3×10^{19}	90 (liquid argon)	-	-
1.2×10^{16}	4.0×10^{19}	90 (liquid argon)	~ 16	~ -25
6.0×10^{15}	2.3×10^{19}	90 (liquid argon)	~ 17	~ -30
8.0×10^{15}	3.2×10^{19}	77(liquid nitrogen)	~ 20	~ -30
4.0×10^{15}	1.9×10^{19}	77(liquid nitrogen)	~ 20	~ -27

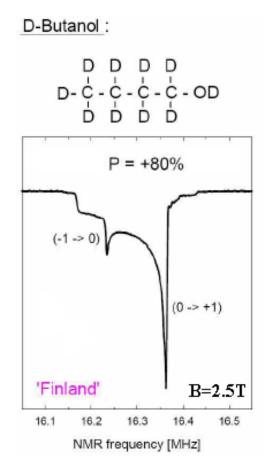
 $T_{DNP} = 0.13 \sim 0.15 K$


EPR spectra of **TEMPO**-doped CD₂



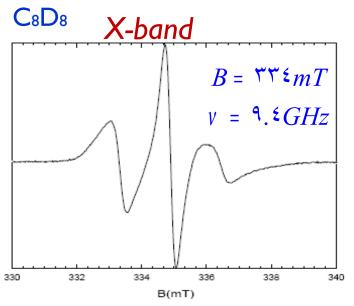
- ➤ Introduce TEMPO Radicals in CD2
 - ★ Tempo and CD₂ foil into a vessel without toching each other
 - × 80°C diffusion from TEMPO vapour

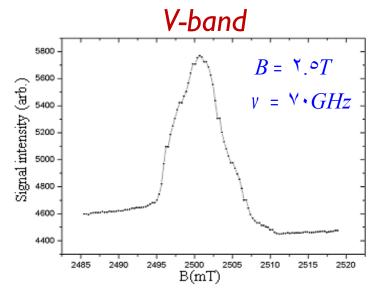
Polarization of TEMPO-doped CD₂


CD ₂ mass	spin concentration	Temp.	1 01411	Microwave
(g)	$(\mathrm{spin/cm^3})$	(K)	(%)	(GHz)
1.190	$(1.9 \pm 0.2) \times 10^{19}$	0.57	$+8.3 \pm 1.1$	69.97
		0.54	-7.2 ± 0.9	70.29
1.180	$(3.0 \pm 0.2) \times 10^{19}$	0.33	$+11.1\pm1.6$	69.97
		0.33	-9.3 ± 1.3	70.30
1.017	$(4.2 \pm 0.2) \times 10^{19}$	0.36	-4.5 ± 0.6	70.28
1.418	$(6.3 \pm 0.2) \times 10^{19}$	0.45	$+2.8 \pm 0.3$	69.97
		0.45	-2.4 ± 0.3	70.28

Current Research

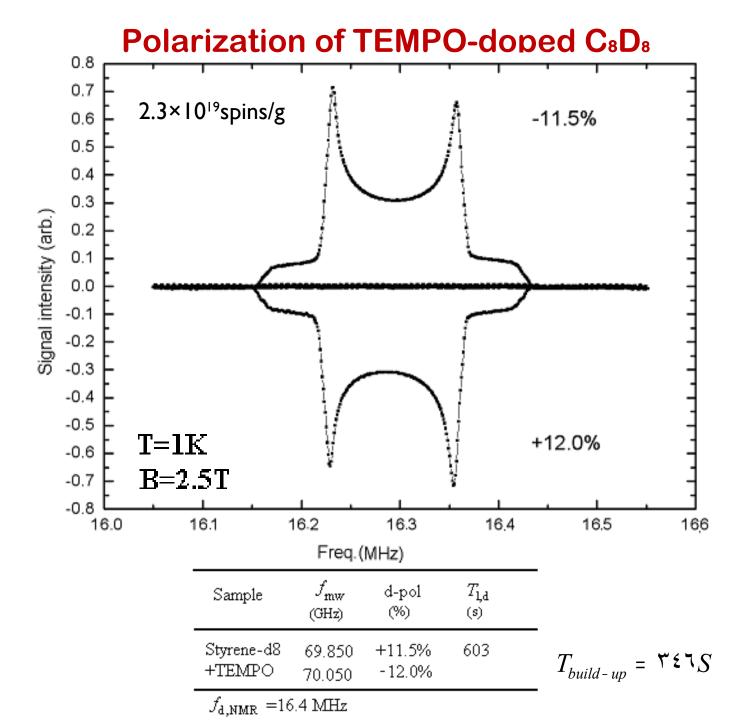
> Try Trityl radical as dopant for C₈D₈


Trityl radicals Finland D36


Boiling point >200°C

EPR spectra of TEMPO-doped C₈D₈

Try different radical concentration in TEMPO-doped



➤ IntroduceTEMPO Radicals in C8D8

- 1. dissolve C₈D₈ polymer in toluene
- add free radical
- 3. let the toluene evaporate at RT

Styrene-D8, polymerized C8D8

Summary

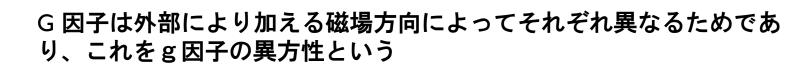
- I. Deuterated Polyethylene CD2 and Styrene-D8, polymerized C8D8 can be successfully polarized under DNP conditions.
- 2. The maxium polarization of deuterated Polyethylene is 30% with irradiation of 8×10¹⁵ e⁻/cm² and 11% with chemical (Tempo) doping.
- 3. Due to EPR spectra, unpaired electrons produced by irradiation have Hyperfine interaction with 5 adjacent D nuclei.
- 4. The first measurement of Styrene-D8 polymerized C8D8 was successful with 12% polarization at 2.5T/1K

outlook

Material	Doping	Polarization	Temperature
CD2	Irradiation	30%	150mK
C ₈ D ₈	Irradiation	?	?
CD2	Tempo	11%	330mK
C ₈ D ₈	Tempo	12%	1K
CD2	Trityl	×	×
C ₈ D ₈	Trityl	?	?

- Irradiate Styrene-D8, polymerized C8D8?
- Find an optimal radical concentration and magnetic feild of Tempo-doped C8D8
- Find a good solvent for Trityl-doped C8D8

Acknowledgement


Prof. Naoaki Horikawa

Prof. Takahiro Iwata

Prof. Werner Meyer

Dr. Gerhard Reicherz

Thank you very much!

