MRI with hyperpolarized contrast agents

Björn Adebahr, Jörg Heckmann, Christian Heß, Werner Meyer, Jens Philipp, Erik Radtke, <u>Gerhard Reicherz</u> and Lars Triebwasser

Institute of Experimental Physics, Ruhr University Bochum, Germany

- Magnet Resonance Imaging
- Contrast media
- Pyruvic acid
- EPR and DNP measurements
- Summary

Magnet Resonance Imaging I

Magnet Resonance Imaging II

- radio frequency region
 - no ionizing radiation
- MR images consist of many information,
 - grey tone of voxel (signal intensity) depends on:
 - spin density (PD: ¹H, ¹³C, ¹⁹F, ²³Na, ³¹P in biological tissue)
 - spin-lattice-relaxation time T_1
 - spin-spin-relaxation time T_2
 - molecular motion (flow, diffusion, perfusion)
 - susceptibility
 - chemical shift

Magnet Resonance Imaging III

			radiation		
frequency	wavelength	energy	type		impact
[Hz]	[m]	[eV]			
10 ²⁶	10 ⁻¹⁸	10 ¹²			
10 ²⁴	10 ⁻¹⁶	10 ¹⁰			
10 ²²	10 ⁻¹⁴	10 ⁸	X – ray		break of
10 ²⁰	10 ⁻¹²	10 ⁶	γ-ray		molecules
10 ¹⁸	10 ⁻¹⁰	10 ⁴			
10 ¹⁶	10 ⁻⁸	10 ²	UV		e ⁻ excitation
10 ¹⁴	10 ⁻⁶	10 ⁰	light		vibration
10 ¹²	10 ⁻⁴	10 ⁻²	infra red		rotation
10 ¹⁰	10 ⁻²	10 ⁻⁴			
10 ⁸	10 ⁰	10 ⁻⁶	FM		00
10 ⁶	10 ²	10 ⁻⁸	SW	MRI	<i></i>
104	10 4	10 ⁻¹⁰	MW		
10 ²	10 ⁶	10 ⁻¹²	1.567		
10 ⁰	10 ⁸ 10 ⁻¹⁴		LVV		

Magnet Resonance Imaging IV

Gyro magnetic ratio of some nuclei

Nucleus	¹ H	³¹ P	¹⁹ F	¹³ C
γ*[MHz/T]	42.6	17.2	40.0	10.8

Larmor frequency of protons

	$f_0 = \gamma * \left[\frac{MHz}{T} \right] \cdot B[T] \qquad \qquad \omega_0 = 2\pi f_0$			$=2\pi f_0$
В	50 μΤ	0,5 T	1 T	4 T
f _o	2.13 kHz	21.3 MHz	42.6 MHz	170.4 MHz

Magnet Resonance Imaging V

— .		Gyro magnetic ratio	Natural abundance	sensitvity S/S _{1H}
Isotope	Spin	[108 rad/s/1]	[%]	(B=const)[%]
¹ H	1/2	2,675	99,98	100,00
³¹ P	1/2	1,084	100,00	6,65
²³ Na	3/2	0,708	100,00	9,27
¹³ C	1/2	0,673	1,11	1,75 × 10 ⁻²
¹⁴ N	1	0,193	99,63	1,0 × 10⁻¹
¹⁷ O	5/2	-0,363	0,038	1,1 1 × 10 ⁻³
¹⁹ F	1/2	2,518	100,00	83,4
³⁵ CI	3/2	0,262	75,77	3,58 × 10⁻¹
³⁹ K	3/2	0,125	93,26	4,76× 10⁻²

Magnet Resonance Imaging VI

Boltzmann statistic:

$$P = \frac{N^{-} - N^{+}}{N^{-} + N^{+}} = \tanh^{-\gamma \cdot \hbar \cdot B_{0}/kT}$$

Example: protons at B=1T and T= 37°C (310K):

P = 0.00032% $\frac{N}{N^+} = 1.0000066 : 6.6 ppm$

Polarized target conditions: B = 2.5T, T = 1K:

P = 0.26% enhancement of E=790

Dynamically polarized:

P=80% enhancement of E=24000

Contrast medium in MRI I

- MRI shows local strength of transversal magnetization $M_{\tau}'(x,y)$
- Contrast: $K = \frac{I_1 I_2}{I_1 + I_2}$ $I_{1,2}$ = signals of tissue 1 and 2 • K dependence project in T volume pixel
- K depends on noise in $I_{1,2}$
- the larger the voxel the higher the signal and lower the noise
- but reduction of spatial resolution
- \Rightarrow strong mutual dependency of contrast, noise and resolution
- ⇒ contrast media, e.g. ¹³C enriched and dyn. polarized

Contrast medium in MRI II

- ¹³C-labeled urea polarized under DNP-conditions, then melted and injected during seconds: ¹³C-sensitive MRI shows a picture 10 mm 10 mm of the blood vessels of a rat
- possible future: polarized, ¹³C-labeled contrast media:
 - no background noise, high reso-
 - lution by short measuring time (1H)
 - small, labeled molecules as markers for tissue blood flow
 - examining metabolism in "real time"
- further possible contrast medium: Pyruvic acid
- \Rightarrow Bochum EPR- and polarization measurements

Left: after 1sec ; Right: after 3sec;

Material: Pyruvic acid

Pyruvic acid (Brenztraubensäure)

- Pyruvic acid (CH3COCO2H) is an alpha-keto acid
- Pyruvate plays an important role in biochemical processes.
- The carboxylate anion of pyruvic acid is known as pyruvate.

Polarization measurements with pyruvic acid-2-¹³C-d3

- labelled with ¹³C and D
- Doped (~10¹⁹ e-/cm³)
 with trityl radical AH111501
 - spin less nucleus shielding
 - the paramagnetic center
 - symmetrical setup
 - → narrow EPR-Line
- Measurement with tree nuclei
 - \rightarrow Spin temperature theory
 - ➔ Sold-State-Effect

EPR lines of different radicals

29.02.08 Yamagata Gerhard Reicherz

Radical for DNP Solid State Effect

Radical for DNP

 μ - frequency scan for protons in trityl doped propandiol

• Solid state effect

29.02.08 Yamagata Gerhard Reicherz

Deuterated Pyruvic Acid I

The lineshape covers two signals from the two bonds

- splitting up because of electric field-gradient along the bond
 But:
- Inner signal: D-O Bond? Splitting: ~ 40 kHz D-C-
- Outer signal: D-C Bond Splitting: ~ 110 kHz
- Area ratio:

4,46 : 1 ≠ 3 : 1

- peak ratio of the inner and outer signals is inverted
 - \rightarrow Field gradient with other
- sign as for the D-O bond

16.2

16.3

f/MHz

16.5

16.4

Deuterated Pyruvic Acid II

NMR-signals \rightarrow B = 2.5T; T = 1K

- dynamic signals from D and ¹³C at
 - T = 1K and
 - B = 2.5 T
- advantage of the ¹³C: signal is very narrow and therefore relatively high

Frequency scan for ¹H and ¹³C

- clear solid state effect for ¹H
- thermal mixing for ¹³C-polarization
- relaxation measurements

Frequency scan for ²H and ¹³C

Both nuclei polarize with the same μ -wave frequency

- after switching off μ -waves, both nuclei relax independently
- \rightarrow hint on validity of the spin temperature theory

DNP in the Spin Temperature Theory 1

DNP in the Spin Temperature Theory 2

Relaxation times for ¹H and ¹³C

Summary

- Hyperpolarized pyruvic acid with enriched ¹³C is a very promising contrast medium for MRI
- For DNP optimizations we investigated deuterated pyruvic acid at T=1K and B=2.5T
 - ¹H polarization behavior can be described by SSE
 - ²H signal not completely understood
 - ¹³C and ²H polarization behavior can be described by spin temperature theory