

from Particle Physics to Medical Applications

W. Meyer Ruhr-Universität Bochum (Germany)

Yamagata, Febr. 29, 2008

What is a Element(ary Particle) ?

~ 450BC. Demokrit ~ 350BC. Aristoteles since 1869 Mendelejew

- : atom (not divisible)
- : earth, water, air, fire
- : chemical periodic system of the elements
 - with ~ 100 atoms (H; O; He;...)

neutrino v: structureless

4 particles needed, to build up ordinary matter: electron; up-quark; down-quark; neutrino

Characterizing of Particles (world of infinite smallness)

> mass m
$$\implies$$
 $m_{electron} = 10^{-30} \text{ kg} = 0.5 \text{ MeV}$
> charge q \implies $q_{electron} = 1.6 \cdot 10^{-19} \text{ Cb}$
> spin (angular momentum) s \implies $s_{electron} = 1/2 \hbar$

etc.

Study of the Particle World (Microcosmos)

- Scattering experiments i.e. bombardment of the objects of study (bacteria = nuclei = protons) with beams (light = electrons etc.)
- detection of scattered particles and newly formed particles with special designed detectors (e.g. COMPASS-spectrometer at CERN)

de Broglie Equation (1924)

particles have wave character

$$\mathbf{E} \approx \frac{\mathbf{h}}{\lambda}$$
$$\mathbf{E} = \mathbf{h} \cdot \mathbf{v}$$

i.e. particles with small wavelength λ have high energy (visible light \Rightarrow x-rays \Rightarrow γ -rays)

Generally:

<mark>E</mark> ≈

the higher the beam energy or the smaller the wavelength, the **more structural details** can be resolved

\Rightarrow high energy accelerators

SPIN

- fundamental property of all elementary particles
- ≻ origin: unknown
- ordering principle (4. quantum number characterizing the atom build-up; spin 1/2-fermions; spin 1-bosons)
- origin for microscopic quantities e.g. magnetization
 Magnetic Resonance Imaging (MRI) (nuclei spin resonance)

Spin as 'Intrinsic Property'

Historical: SPIN was a major complication at the description of the fundamental laws

- 1609 : Kepler-laws Conservation of angular momentum
- 1920's: Classical laws unable, to describe atomic systems
- 1925 : PAULI PRINCIPLE Spin/Statistics laws
- 1925 : Hypothesis of 'intrinsic' SPIN Uhlenbeck+Goudsmith
- 1926 : Thomas precession correct relativistic calculation
- 1928 : DIRAC equation elegant description of $(i\hbar\nabla - mc)\psi = 0$ a free Spin 1/2-particle with the electromagnetic field \Rightarrow Basis for QED – calculable THEORY Unsurpassed success of Theory + Experiment: $(g-2)_{e,\mu}$

Today: Standard Model

1970's: 3 families of Quarks + Leptons1980's: + 5 Vectorbosons

SPIN 1/2 - FERMIONS

Picture: Particle with SPIN, that rotates around its center of gravity **Precise description:** Only in the framework of quantum mechanics

W. Pauli was against the picture of a rotating electron
"It took quite a while, until N. Bohr was successfully, to convince his very critical pupil (W. Pauli) from the ingenuity of this new concept."
(Phys.-Blätter, April 2000)

 e. g. for electron, proton, neutron (Spin 1/2 - particles) 2 discrete numbers in a magnetic field (orientation quantization, energy quantization)

 Particles with Spin can be manipulated with magnetic fields (analogy: magnetic needle (compass) in the earth magnetic field)

Polarization

= Orientation of Spins in a magnetic field

Without magnetic field: Randomly orientated spins

With magnetic field: Orientation of spin

All Spins in magnetic field direction : 100 % Polarization

Change of polarization (e.g. destruction by HF-field) = energy change in the spin system measured by the Nuclei Magnetic Resonance (NMR) method

⇒ 'visibility` of the particles with spin (mainly protons)
by Magnetic
Resonance Imaging (MRI)

Dream: 100% polarization of a Spin ensemble In reality not so easy to realize Interplay between polarizing force \triangleq magnetic field B and depolarizing force \triangleq thermal motion of (temperature T

 thermal motion of Spin particles (temperature T – relaxation)

Examples:

$B = 10^{-5}$ Tesla T = 25° Celsius	(earth magnetic field) (room temperature)	$P = 10^{-12}\%$
B = 5 Tesla T = -273° Celsius	(superconducting magnets) (refrigerators)	P = 100%NMR (particle physics)
B = 1 Tesla T = 37° Celsius	(superconducting magnets) (body temperature)	$P = 10^{-8}\%$ MRI (medicine)

SPIN – OFF

Elementary Nuclei spin (Elementary particle physics)	\Rightarrow	Lung diagnostics (Medicine)
Polarized Target	← Apparatus →	Magnetic Resonance Tomograph (MRT)
Subject of study protons, neutrons e.g. C ₄ H ₁₀ O (~ 5 x H ₂ O), ³ He	\leftarrow Spins \rightarrow	Objects of information protons (standard), ³ He e.g. H ₂ O in body tissue
Spin structure of protons and neutrons	← Goal →	Picture from parts of the human body
Polarization degree by Nuclear Magnetic Resonance (NMR)	← Detection → signal	Local information by Magnetic Resonance Imaging (MRI)
Proton, ³ He-density Relaxations	← Parameter →	Proton, ³ He-density Relaxations

Particle Physics

Goal: Experiment

Nucleons and nuclei bombarded with

Particle Physics

Goal: Theory

Understanding of the material structure by means of

QCD, which has problems at the description of the Quark-Gluon-Dynamics in the confinement region (several GeV; α_s strong)

many models

systematic experimental research

Possible solution: Study of excited resonant states of the nucleon

Reaction for the study of excited nucleon state e.g. Bonn (2.5 GeV electron synchrotron) INS (1.4 GeV electron synchrotron) → Nagoya activities

Pion Photo production

Experimental progress in the GeV-region by new facilities: COSY; ELSA; MAMI; SPRING8; TJNAF ... with a big SPIN program

and at higher energies upgraded facilities for SPIN Studies

SLAC	—	1990 - 1996
CERN	—	SMC finished; COMPASS runs
DESY		HERMES finished
BNL		RHIC started

Structure Studies : – meson production

- resonance excitation
- threshold behaviour
- form factors
- structure functions
- spin dependence
- sum rules
- 1. Step : Measurements of Cross-Sections but : Averages of many pure SPIN Cross-Sections

Experiments: 'Composed' Spin

Key experiments at CERN, SLAC, DESY
 Deep inelastic polarized Lepton-Nucleon scattering

Studies of SPIN effects \Rightarrow

POLARIZATION-EXPERIMENTS

Renaissance: improved polarization techniques for beams & targets

2 Sum rules as motors for the development of Pol. Targets & Pol. Beams

– Bjorken Sum Rule (1966)

$$\int \left[g_1^p(\mathbf{x}) - g_1^n(\mathbf{x}) \right] d\mathbf{x} = \frac{1}{6} \left| \frac{g_A}{g_v} \right| \cdots$$

- Gerasimov-Drell-Hearn (GDH) Sum Rule (1965)

$$\int_{0}^{\infty} \left(\sigma_{3/2} - \sigma_{1/2}\right) \frac{\mathrm{d}v}{v} = 2\pi^2 \alpha \frac{\kappa^2}{m^2}$$

90° due to technical difficulties experimentally not tested

Solution :

- Highly polarized electron beams: $P_e \sim 80\%$ (SLAC, Nagoya)
- High density and highly polarized ³He-gas targets: $P_{He} \sim 50\%$ (Mainz, Princeton)
- New solid target materials with high radiation hardness: NH₃, ND₃, ⁶LiD (Bonn, Bochum)
- Highly polarized H and D gas target cells (Erlangen, Wisconsin)
- Solid target & 4π-detection (Bonn, Mainz, Nagoya)
- Highly polarized solid deuteron targets (Bochum)

Frozen Spin Target (GDH - Mainz, Bonn)

Marriage of polarized solid target and 4π-particle detection (Bonn)

0.64T magnetic ,holding' coil

Results: GDH Sum Rule

- GDH sum rule at the proton \checkmark
- Additional results for double polarization observable in single and multiple pion photoproduction → later

– GDH sum rule at the neutron

< 0.8 GeV (Mainz) 0.8-1.8 GeV (Bonn)

Target Asymmetry Measurements: y-Polarization

1992 (Bonn) – detector acceptance $\approx 1 \text{ sr}$

 $\gamma p \uparrow \rightarrow \pi^+ n$ 216 data points $270 \text{MeV} < \text{E}_{\gamma} < 800 \text{MeV}$ $\gamma p \uparrow \rightarrow \pi^0 p$ 52 data points $272 MeV < E_{\gamma} < 573 MeV$

 $\theta_{\rm CMS} = 35^{\circ} - 135^{\circ}$

Nucl. Phys. A601, 319, 1996

Double Polarization Measurements: z-Polarization

$1998 - 4\pi$ -detection

GDH-measurements in Mainz and Bonn

Phys. Rev. Lett. 87, 022003, 2001 Phys. Rev. Lett. 91, 192001, 2003

> 2007 – 4π -detection + $\vec{p}(p_x, p_y, p_z)$

Complete exp. $\gamma N \rightarrow \pi N$

Finally, there is a Goal

Advantages: - high beam intensities tolerable < 5nA at high polarization
 - more smooth data taking periods (no interruption by mechanical manipulations)

Difficulties:

- magnet field homogeneity $< 10^{-3}$ for proton targets (1. step) - high current input in ³He/⁴He refrigerator > 100A for > 1.5T

Results (CERN, SLAC, DESY)

 $\sim \approx 0.3$

from deep ineleastic polarized lepton-nucleon scattering (a) Bjorken sum rule ✓

Quark

Spin-Puzzle

- $L_q \rightarrow experiments planned$
- transversity measurements \rightarrow experiments done

COMPASS Experiment at CERN

COMPASS Target Equipment at CERN

COMPASS Target at CERN

		NH ₃	Butanol	d-Butanol	⁶ LiD
Polarization of the nuclei	P _N	H: 0.90	H: 0.90	<u>).</u> 50 0.8	D, ⁶ Li: 0.50
Polarization of the nucleons	P _n	0.90	0.90	0.463 0.74	0.463 in D
					0.433 in ⁶ Li
(fractional) Dilution factor	f	0.176	0.135	0.238	D, ⁶ Li: 0.25
Effective polarization	$\mathbf{P}_{\mathrm{eff}}$	0.158	0.122	0.110	0.224
Density (g/cm ³)	ρ	0.85	0.99	1.10	0.84
Packing factor	κ	0.60	0.60	0.60	0.55
Figure of merit (10 ⁻³ g/cm ³)	F	12.7	8.8	≫.€< 20.5	23.2

Deep inelastic scattering on polarized Deuterons

Figure 8: The asymmetry $A_1^d(x)$ as a function of x at the measured values of Q^2 : the results for $Q^2 < 1 \ (\text{GeV}/c)^2$ obtained in this analysis are compared with previous results at different values of Q^2 from COMPASS [12], SMC [8,13], HERMES [11], SLAC E143 [9] and SLAC E155 [10]. The E155 data corresponding to the same x have been averaged over Q^2 . Errors are statistical.

Polarized Neutrontarget

➤ Deuteron as Spin 1-particle

Solution >> ³He as Spin 1/2-particle

³He-gas highly polarizable (P ~ 50%) by means of dynamic methods (laser) at room temperature (300 K) and small magnetic field (1 mT) in glass cells

polarized ³He easily transportable

→ Deep inelastic scattering experiments e.g. at SLAC

Inhale polarized ³He-gas as patient in a MRI-tomograph \Rightarrow ³He-MRI \Rightarrow picture of lung

MRI-Picture of Lung

Hydrogen (1H)

³Helium

Heidelberg, Nov. 1995

Polarized Target Materials by DNP

Commonly used in particle physics experiments

Polarizable				Radiation	
Materials and chemical composition	Dopant and method ^a	Nucleons % by weight	B/T Tesla/K	Polarization %	Characteristic flow 10 ¹⁴ particles/cm ²
Butanol C ₄ H ₉ OH	EHBA Cr (V) Ch	13.5	2.5/0.3	±93	3 – 4
Ammonia ¹⁴ NH ₃ , ¹⁵ NH ₃	NH ₂ Ir	17.5, 16.6	5/1.0	+97 -100	70 , 1 7 5 ^b
⁶ LiD	F-center Ir	50	2.5/0.2	±57	400
D-Butanol	Finland D36	23.8	2.5/0.2	±79	not measured

^a Ch: chemically doped, IR: doped by irradiation

^b In NH₃ there are two distinct regions of decay

DNP for

Particle physics Proton (Deuteron) rich material (see before) polarized at T < 0.2 K (3 He/ 4 He) and B = 2.5 T (70 GHz)High polarization (80–100%) with good polarization resistance against radiation damage Experiments

Medical applications ¹³C-enriched material (e.g. urea; pyruvic acid) polarized at T = 1.2 - 1.3 K (pure ⁴He) and B = 3.5 T (98 GHz)Reasonable polarization (40%) \Rightarrow Fast dissolution of frozen material Hyperpolarization in liquid state transfered for in vivo studies

Adopted innovative Technology

Spin oriented ¹³C-nuclei for medical diagnostics

Optimized production path for hyperpolarized ¹³C-labelled contrast agents Improvement twofold:

- → high degree of polarization gives sufficient time at room temperature for in vivo studies (exponentiell decay of nuclei spin polarization)
- \rightarrow transportable polarizers for use in medical environment

All together:

Even after 45 years of Dynamic Nuclear Polarized (DNP) solid targets in particle physics the next future will be bright, too

enhanced by an immense interest for medical and biochemistry applications.

Dynamic Nuclear Polarization Symposium 2007

The University of

Theory – Hardware – Applications – Radicals

