Pulsed NMR in Target Material Research

B. Adebahr, J. Heckmann, <u>Ch. Heß</u>, W. Meyer, J. Philipp, E. Radtke, G. Reicherz, L. Triebwasser

> Institute for Experimental Physics Ruhr-University Bochum Germany

Outline of the Talk

- Principle of Pulsed NMR
- Excitation Spectra
- Experimental Setup
- Complex Fourier Transform
- NMR Measurements with ⁶LiD
- Phase Transition in Frozen Butanol
- Summary and Outlook

Principle of Pulsed NMR

Principle of Pulsed NMR

By applying an rf pulse, every single spin is tipped out of the B_0 direction. This causes a net transverse magnetization.

Because every single spin starts its precession motion, the transverse magnetization also precesses around the magnetic field.

The rotating magnetic moment inducts an oscillating signal in the receiver coil.

 \rightarrow free inductance decay (FID)

Distribution of the Excitation

NMR Setup – Block Diagram

Cryostat Insert for Pulsed NMR

Sample in PTFE container with NMR coil

Tuning capacity: Trimmer plus fix capacities

Christian Heß Ruhr-University Bochum

Complex Fourier Transform

Measurement with ⁶LiD @ 1K

- Free Inductance Decay -

Measurement with ⁶LiD @ 1K - TE Spectra -

Measurement with ⁶LiD @ 1K

- Dynamic Polarization Spectra -

Effect of Sample Warming on Polarization Ability

Abnormal warm up behaviour

NMR monitoring of Devitrification - Linewidth vs. Time -

NMR monitoring of Devitrification

- Linewidth vs. Temperature -

Amorphous / Crystalline Sample

Summary and Outlook

- Pulsed NMR system for *top loading* ⁴He refrigerator
- Wide range of sensitivity
 - TE / dynamic polarization @ 1K
 - TE polarization up to 300K
- Very fast technique (100 spectra in less than half a second)
 - Observe fast processes by their effects on the NMR line
- Simultaneous NMR detection of D- and ⁶Li-nuclei in ⁶LiD
- Need of amorphous samples to ensure good polarization ability
 - Devitrification in butanol starts at T~150K
- Improve sensitivity for quadrupol broadene T_{1e} gnals
- Measurement of electron relaxation time