

Polarized Proton Acceleration at the J-PARC Accelerator Complex

Int. Sym. on Polarized Target and its Applications

Feb. 29, 2008, Kaminoyama, Yamagata

Hikaru SATO, KEK-PS & J-PARC

Hikaru Sato, KEK-PS & J-PAR(

<u>Linac</u>

Ions	
Energy for RCS injection	400 MeV
Energy for ADS	600 MeV
Peak Current	50 mA
Beam Pulse Length	500 µs
Repetition Rate	50 Hz

<u>RCS</u>

Extraction Beam Energy	3 GeV
Repetition	25 Hz
Average Beam Current	333 µA
Extraction Scheme	Fast

MR

1

Extraction Beam Energy	50 GeV
Average Beam Current	15 µA
Repetition	0.3 Hz
Extraction Scheme	Fast, and Slow

Main Beam Parameters

P24: Polarized Proton Acceleration at J-PARC

4th J-PARC PAC Meeting at KEK January 7th, 2008 Yuji Goto (RIKEN/RBRC)

Collaboration

- Argonne National Laboratory
 - D.F. Geesaman, P.E. Reimer
- Brookhaven National Laboratory
 - M. Bai, H. Huang, A.U. Luccio, T. Roser, A. Zelenski
- Univerisity of Illinois at Urbana-Champaign
 - M. Grosse Perdekamp, J.-C. Peng
- KEK
 - S. Ishimoto, S. Kumano, A. Molodojentsev, C. Ohmori, N. Saito, H. Sato, S. Sawada, J. Takano
- Kyoto University
 - K. Imai
- Los Alamos National Laboratory
 - M. Brooks, X. Jiang, G. Kunde, M.J. Leitch, M.X. Liu, P.L. McGaughey
- RCNP, Osaka University
 - K. Hatanaka
- RIKEN
 - Y. Fukao, Y. Goto, A. Taketani
- RIKEN BNL Research Center
 - R. Seidl, M. Togawa
- Rikkyo University
 - K. Kurita
- Tokyo Institute of Technology
 - T.-A. Shibata
- Tokyo University of Science
 - J. Chiba
- Yamagata University
 - N. Doshita, T. Iwata, K. Kondo

Polarized proton acceleration

- How to keep the polarization given by the polarized proton source
 - depolarizing resonance
 - imperfection resonance
 - magnet errors and misalignments
 - intrinsic resonance
 - vertical focusing field
 - weaken the resonance
 - fast tune jump
 - harmonic orbit correction
 - intensify the resonance and flip the spin
 - rf dipole
 - snake magnet
- How to monitor the polarization
 - polarimeters

Polarized proton acceleration at AGS/RHIC

 Proposed scheme for the polarized proton acceleration at J-PARC is based on the successful experience of accelerating polarized protons to 25 GeV at BNL AGS

Polarized proton acceleration at J-PARC

Modes of operation

- Operation mode of the J-PARC MR should be:
 - 50 GeV maximum energy
 - 10¹² proton/spill (~10³⁶cm⁻²s⁻¹ luminosity with a ~5% interation target)
 - 8 bunches
 - 2×10¹¹ proton/bunch at RCS
 - 0.5 s spill length (working assumption)
 - 80% polarization
 - 10π mm·mrad normalized 95% emittance and 0.3 eVs longitudinal emittance

High-intensity polarized H⁻ source

- RHIC OPPIS
 - built at KEK and upgraded at TRIUMF
 - 0.5-1.0 mA (max. 1.6 mA) H⁻
 ion current in 400 μsec pulse
 - 1.2-2.4×10¹² H⁻ ion/pulse
 - 7 Hz max. repetition rate
 - 1 Hz routine repetitior
 - 82-85% polarization

High-intensity polarized H⁻ source

- Issues
 - where to locate the polarized H⁻ source
 - how to merge the polarized beam to the existing beam line
 - may require RFQ
 - maintenance of the laser system

From source to RCS

- Polarimeter
 - at the end of the linac
 - proton-Carbon inclusive polarimeter similar to that at BNL
- Stripping foil
 - 300-500 μ g/cm² stripping foil for injection to RCS
 - need to be replaced by 100 $\mu\text{g/cm}^2$ foil to have better dp/p

- Kinetic energy from 0.18 GeV to 3 GeV
 - $G\gamma = 2.2 \sim 7.5$
 - betatron tune $v_v = 6.35$

J-PARC PAC meeting

- 5 imperfection resonances
 - $G\gamma = 3, 4, 5, 6, 7$
 - corrected by harmonic orbit correction
- 4 intrinsic resonances
 - betatron tune $v_v = 6.35$
 - $G\gamma = 2.65 (9-v_y), 3.35 (-3+v_y), 5.65 (12-v_y), 6.35 (0+v_y)$
 - first small resonance is corrected by fast tune jump
 - latter three strong resonances are completely (> 99%) spinflipped by a rf dipole
 - 20 Gm vertical rf dipole
 - smaller size of beam (comparing to 7cm painting beam) required: operational issue

- Issues
 - where to locate the rf dipole
 - design of the rf dipole
 - beam monitor system to cover a wide dynamic range between high-intensity unpolarized beam (4×10¹³/bunch) and polarized beam (1.5×10¹¹/bunch)
 - position monitor necessary to calculate the magnetic field error and correct it by the harmonic orbit correction
 - spin tracking to be done

- Kinetic energy from 3 GeV to 50 GeV
 - $G\gamma = 7.5 \sim 97.5$
 - betatron tune $v_x = 22.339$, $v_y = 20.270$

- Two superconducting 30% partial helical Siberian snakes separated by 120 degree installed in two of the three straight sections:
 - avoid all vertical depolarizing resonances
- Two quadrupole doublets
 - to compensate perturbation of the lattice by the snakes at low energies

full spin flip at all imperfection and strong intrinsic resonances using partial Siberian snake and rf dipole at AGS

• AGS 25% superconducting helical snake

helical dipole coil

correction solenoid and dipoles

measured twist angle 2 deg/cm in the middle ~4 deg/cm at ends

January 7, 2008

 Possible location of partial helical snake magnets in the MR

- Spin tracking
 - $-v_x = 22.128, v_y = 20.960$
 - average of 12 particles on an ellipse of 8π mm mrad

Primary beam extraction

- No serious issues
- Issues
 - operational issues
 - tune change for the extraction
 - vertical bend of the beam line
 - beam profile monitor system for the stability of beam intensity, position, and spot size to provide a systematical control of the experimental data quality
 - spin rotator magnet necessary to manipulate a direction of beam polarization

Proton-carbon elastic-scattering polarimeter

- Requirements
 - known analyzing power A_N
 - small systematic error
 - quick measurement (~1 min)
- AGS/RHIC pC CNI
 polarimeter
 - elastic scattering in the coulomb-nuclear interference region
 - micro-ribbon carbon target in the circulating beam
 - detecting recoil carbon nucleus
 - arrival time from time-zero to Si sensors

Proton-carbon elastic-scattering polarimeter

- Proton-carbon CNI polarimeter at J-PARC
 - no time-zero information
 - coincidence measurement between the recoiled carbons and the forward going protons with the extracted beam
 - economical solution which provides a quick turnaround to optimize machine parameters to achieve maximum polarization

Absolute polarimeter

- Proton-proton and proton-carbon elastic scattering at 31.2 GeV of the RHIC beam
 - measured analyzing power data at 31.2 GeV of the RHIC beam
 - available for calibration of absolute polarimeter of the main ring (gas jet) and/or extracted beam (solid target)

Cost for polarized proton acceleration

- Rough estimation based on the cost at BNL
 - 200 million yen high-intensity polarized H⁻ source
 - OPPIS / RFQ / polarimeter
 - 50 million yen from source to RCS
 - proton-carbon inclusive polarimeter / stripping foil upgrade
 - 100 million yen acceleration at RCS
 - rf dipole magnet / beam monitor system upgrade
 - 500 million yen acceleration at MR
 - two superconducting 30% partial helical Siberian snakes / two quadrupole doublets
 - 250 million yen primary beam extraction
 - beam profile monitor system / spin rotators
 - 100 million yen proton-carbon CNI polarimeter
 - 100 300 million yen absolute polarimeter
 - gas jet in the main ring and/or solid target with the extracted beam
- Total 1,300 1,500 million yen

Summary

- We propose to make the J-PARC facility allow acceleration of polarized proton beams to 30-50 GeV
 - for experiments using this primary beam
- Feasibility studies
 - OPPIS
 - RCS by rf dipole magnet
 - MR by two partial helical snake magnets
 - polarimeters
- Technically, there is no showstopper

Polarized target

- Michigan polarized target
 - existing at KEK
 - target thickness ~3 cm (1% target)
 - maybe operational with 10¹¹
 ppp (luminosity ~10³⁴ cm⁻²s⁻¹)

J-PARC PAC meeting