DNP for polarizing liquid ³He

Akira Tanaka Department of Physics For Yamagata University PT group

Background of the study

- Polarized ³He targets have been used in various scattering experiments
 - > in ³He only neutron is polarized
 - > a good target for the study of neutron characteristics
 - > studied only in gas targets

Advantages of polarizing liquid ³He
 >Its fluidity may allow to make a polarized target with circulating polarized liquid ³He
 >Density gas(1atom):liquid=1:662
 >Could be applied in many other fields
 (e.g. medical use, material science, chemistry, etc.)

How to polarize ³He in liquid form

1. Brute force method

- >Polarized liquid is obtained by quickly melting polarized solid
- >55% polarization obtained in solid at 6.6T, 6mK, and 30bar, G.Bonfait et al. Phys.Rev.Lett. 53(1984)1092
- >However, it's difficult to make ³He solid
- 5. Dynamic Nuclear Polarization (DNP)
 - >spin-spin coupling between electron and nucleus
 - >Transferring polarization of electrons to neighboring nuclei
 - >able to obtain both positive and negative polarizations

New method for polarizing liquid ³He in DNP

- Direct coupling of a unpaired electron and ³He
- Using unpaired electrons in a free radical
- Embedding the free radical into a porous material
- Filling the porous material with liquid ³He
- Irradiating a microwave

freeradical:TEMPO porous material:zeolite

Zeolite and TEMPO

Zeolite($Na_nAl_nSi_{(192-n)}O_{384}$ ·240H₂O(n=48~76)

TEMPO

NaY type zeolite (n=51)

- Super Cage
 - ✓ Max dia.: 13Å
 - ✓ Window dia.: 7.4Å
- 4.7x10¹⁹ super cages/g
- ³He(dia.:3) → ≈80 ³He can get in one super cage
- TEMPO(2,2,6,6-tetramenthylpiperidinyl-1-oxyle)
 - Melting point: 36 °C
 - Boiling point: 67 °C
 - Molecule size(dia meter): ~7Å

Embedding TEMPO to Zeolite

準備 Preparation : Desiccate zeolite at 500 °C for 8 hours

Embedding TEMPO to Zeolite

- Dissolve TEMPO in n-pentane
- Add zeolite to n-pentane solution
- Stir n-pentane solution for 8 hours in a sealed vessel

Embedding TEMPO to Zeolite

- Dissolve TEMPO in n-pentane
- Add zeolite to n-pentane solution
- Stir n-pentane solution for 8 hours in a sealed vessel
- Evaporate n-pentane in a vacuum container
 - TEMPO:3~6mg Zeolite:5~10g n-pentane:50~100cc

Experimental setup

- Experimental cell :

 PET tube
 +

 VCR gas connector

 Volume : 2.5cc

 (L=35mm,
- Experimental cell filled with zeolite tightly and quickly

Positive enhancement by DNP

Irradiated microwave frequency:70.072GHz

polarization 0.22 Positive enhancement $S/S_{TE} = 3.09$ Polarization $P_{+}=0.67\%$ (in previous test0.3%)

Spin density: 0.93×10¹⁸ [spins/cc]

Negative enhancement by DNP

Irradiated microwave frequency:70.072GHz

T=0.90K, B=2.5T,Spin density 0.93×10^{18} [spins/cc] polarization 0.22

> Negative enhancement $S/S_{TE} = -2.06$ Polarization $P_= -0.45\%$ (in previous test 0.21%)

Micro wave frequency dependence

fc:ESR center frequency of TEMPO (=70.177GHz)

 difference between positive max enhancement and negative max enhancement is about 0.18GHz

Polarization and enhancement data

	Test of Feburery 27 th , 2007	Test of November 9th, 2007
Positive Enhancement S/S _{TE}	2.34	3.09
Negative Enhancement S/S _{TE}	-1.59	-2.06
Positive Polarization	0.30%	0.67%
Negative Polarization	-0.21%	-0.45%

Comparing of TE signal

spin density 4.5×10^{18} [spins/cc], T=1.5K, B=2.5T

Spin density 0.93×10^{18} [spins/cc], T=1.1K,B=2.5T

FWHM=26.6[KHz]

FWHM=3.65[KHz]

Comparing of ESR signal

Spin density: 0.93×10¹⁸ [spins/cc]

Spin density: 4.5×10¹⁸ [spins/cc]

Spin density get into 1/5 compare ESR signal of Febuary 23th.
 Width of ESR signal spreaded

Summary

- We obtained the thermal equilibrium signal of liquid ³He in zeolite.
 - ⇒TE signal width change by spin density and ESR signal width
- We obtained polarization enhancements for liquid ³He in zeolite by DNP(world record).
- We obtained different NMR & ESR signal using same zeolite sample.
 - ⇒with 8 manth preservation in vacuum, spin density decreased and ESR signal width spreaded
- We should improve experiment systems.
- We should search optimal spin density

Thank you for listening

e↑ He↑ e↑ He e↑ He↓

ee

e↓ He↑ e↓ He e↓ He↓

Zeolite への TEMPO のドープ方法

- •TEMPO を n-pentaneに溶す
- ・zeoliteを加える
- n-pentaneが入った容器を密閉
 8時間攪拌する
- 真空容器に移してポンプで引き
 n-pentanを蒸発させる

Zeolite and its character

- Mineral which has a micro-porous structure, high hydrophobicity, thermostability and mostly used as a catalyst, ion exchanger, absorber
- $(Na_nAl_nSi_{(192-n)}O_{384} \cdot 240H_2O_{(n=48~76)})$

Used (HSZ-300serise)TOSOH corporation

- Cation type: Na
- SiO₂/Al₂O₃(mol/mol): 5.5
- Na2O(wt%): 12.5
- U.C.C. by ASTM :24.63
- NH3-TPD(mmol/g): -
- Surface Area(BET, m2/g): 700
- Crystal Size(µm): 0.3
- Mean Particle Size(µm): 6

Zeolite's atom

atom	spin	Magnetic moment	Abundance(%)
¹⁶ O	0	0	99.762
¹⁷ O	5/2	-1.89371	0.038
¹⁸ O	0	0	0.2
²³ Na	3/2	+2.21752	100
27 A	5/2	+3.64141	100
²⁸ Si	0	0	92.23
²⁹ Si	1/2	-0.55525	4.67
³⁰ Si	0	-0.55525	3.10

Decrease of TEMPO in Zeolite

Spin density :7.5×10¹⁸spin/cc Room temperature

$$P_{TE} \approx \frac{\mu B}{kT}$$

$$\mu_{N} = 5.05 \times 10^{-27} J \cdot T^{-1}$$

$$\mu_{He3} = -2.13 \times \mu_{N}$$

$$k_{B} = 1.38 \times 10^{-23} J \cdot K^{-1}$$

$$\rightarrow 0.22\%$$

$$P_{V} \approx rac{S}{S_{TE}} P_{TE}$$

 $P_{TE} \approx 0.22\%$
 $S \approx -3.926$
 $S_{+} \approx -12.141$
 $S_{-} \approx 8.089$

 $\rightarrow P_{V+} = 0.67\%$ $\rightarrow P_{V-} = -0.45\%$