High deuteron polarization in polymer target materials

^{1,2}L.Wang, ¹W.Meyer,

¹Ch.Hess, ¹E.Radtke, ¹A.Berlin, ¹J.Herick, ¹G.Reicherz,

¹Institut of Experimental Physics AG I, Ruhr-University Bochum, Bochum, D-44780, Germany

²Physics Department, School of Science, Donghua University, Shanghai, 200051, China

³N.Doshita, ³K.Kondo, ³T.Iwata,

³*Physics Department, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan*

⁴N.Horikawa

⁴College of Engineering Chubu University, Kasugai, 487-850, Japan

Yamagata, Oct.2011

Li Wang

Content

- 1. Dynamic polarized solid target (DNP) for particle physics experiments
- 2. The trityl radicals progress for deuterated target materia
- 3. D-polymer materials: CD₂ and C₈D₈
- 4. The Bochum DNP-apparatus
- 5. ERP investigation and Polarization results for
 radiation doped
 CD₂
 trityl radical doped
 C₈D₈
- 6. Conclusion and outlook

Polarized Solid Targets

- Used in high energy particle physics experiments for studying the nucleon structure since about 50 years
- Present target materials for high energy spin physics experiments:

NH ₃	COMPASS experiment at CERN (160-190GeV)
⁶ LiD	COMPASS experiment at CERN (160-190GeV)
CH ₂ , CD ₂	GDH experiment in SPRING-8
Butanol	Experiments at ELAS (Bonn < 3.0GeV) and
D-butanol	MAMI (Mainz < 1.5GeV) accelerators

• Physics observable determined by single or double asymmetry measurements A

 $A = \frac{1}{P_T} \cdot \frac{1}{f} \cdot \frac{N \uparrow -N \downarrow}{N \uparrow +N \downarrow} \qquad f = \frac{\text{\#polarizable particles}}{\text{\#all particles}}$

 P_T : target polarization $N \uparrow, \downarrow$: counting rates for spin \uparrow, \downarrow to magnetic field $f = 0.1 \dots 0.3 \dots 0.5$

DNP solid targets

The Principle of Dynamic Nuclear Polarization

• Thermal Equilibrium (TE) $P = \frac{\langle I_Z \rangle}{I_Z^{\text{max}}} = B_I \left(\frac{\mu B}{2kT}\right) \propto \left(\frac{B}{T}\right)$

B/T	P _p [%]	P _d [%]	P _e [%]
2.5T/1K	0.25	0.05	93
15T/10mK	91	30	100

- Dynamic Nuclear Polarization (DNP)
- Transfer of polarization from paramagnetic electrons to the nuclei
- Parameters of DNP: temperature; magnetic field; microwave power; electron relaxation time; the relation of EPR linewidth and nuclear Larmor frequency...

Doping with paramagnetic electrons:

- ~ 10^3 nuclei feeded by 1 unpaired electron from:
 - ▲ Chemically stable radical \rightarrow Solids
 - ▲ Radiation induced defects → Solids

In the 1970already 80-90% in protonated materialsUntil 200340-50% in deuterated materials

The Trityl Radicals

— Important Progress for Deuterated Materials

Finland D36'(AH110355 deutero acid form)used for butanol-d10

Deuteron : up to 79% at 150mK/2.5T

Ox063(AH100136 sodium salt)used for propandiol-d8

Deuteron: up to 81% at 150mK/2.5T

Ox063Me (AH 111 501 sodium salt) used for pyruvic acid

¹³C: up to 74% at 900mK/5.0T

W.Meyer, et al., NIM A 631 (2011) 1-5 Citation : J.H. Ardenkjaer-Larsen, private communication

Important parameter: ESR linewidth and shape

Zeeman Energy of a free electron

 $E_{Z} = -g_{e}\mu_{B}\vec{S}\cdot\vec{B}$

Contributions to the Electron Zeeman linewidth

• Try radiation doping if only low μ nuclei present

Bochum measurement

Material	Radical	∆g/ḡ [10 ^{–3}]	FWHM [mT]	at 2.5T P _{D,max} [%]
D-Butanol	EDBA	5.98 ± 0.03	12.30 ± 0.20	26
D-Butanol	TEMPO	3.61 ± 0.13	5.25 ± 0.15	34
D-Butanol	Porphyrexide	4.01 ± 0.15	5.20 ± 0.23	32
¹⁴ ND ₃	¹⁴ ND ₂	≈ 23	4.80 ± 0.20	44
¹⁵ ND ₃	¹⁵ ND ₂	≈ 23	3.95 ± 0.15	-
D-Butanol	Hydroxyalkyl	1.25 ± 0.04	3.10 ± 0.20	55
⁶ LiD	F-center	0.0	1.80 ± 0.01	57
D-Butanol	Finland D36	0.50 ± 0.01	1.28 ± 0.03	79
D-Propandiol	Finland H36	0.47 ± 0.01	0.97 ± 0.04	1.7
D-Propandiol	OX063	0.28 ± 0.01	0.86 ± 0.03	81

J. Heckmann, et al., Phys. Rev. B 74 (2006) 134418.

Result: The smaller the EPR linewidth, the higher the deuteron polarization value

The Spin Temperature Theory

 Deuteron with rather small gyromagnetic ratio Thermal Mixing is DNP mechanism for deuteron enhancement

Nucleus γ/2π (MHz.T⁻¹ 42.576

6.536

-32.434

16.546

10.705

3.077

-4.316

-5.772

40.053

11.262

17.235

-11.777

1H

³He

7Li

¹³C

14N

¹⁵N

17O

¹⁹F

²³Na

³¹P

¹²⁹Xe

	$\frac{\frac{Nuclear Zeeman}{(NZS) \mathcal{O}_{0I}}}{Three spin exchange}$
)	process:
	EZS-EDS-NZS $f \mid \begin{array}{c} \text{Electron Dipol} \\ (EDS) \\ \end{array} \xrightarrow{MW} \\ (EZS) \\ \hline \end{array}$
	//////Lattice///////////////////////////////////
_	$P_{I,\max} = B_{iI} \left(I \beta_L \omega_e \frac{\omega_I}{2D} \frac{1}{\sqrt{\eta \left(1+f\right)}} \right)$
	$\beta_L = \hbar / kT_L$
	$h\delta = g_e \mu_B D$ $\eta = t_z / t_D$ f : a leakage factor r

The smaller EPR linewidth, the higher polarization

Introduction to D-polymer materials

Poly(Ethylene-D4) CD2

Styrene-D8, polymerized C₈D₈

dilution factor

Motivation to use D-polymer materials

Spin physics

- > Thin targets for scattering experiments at low energies
- Polarized scintillator targets

• Merits of CD₂, C₈D₈

- 1. High purity of D 0.98, 0.99
- 2. D with spin 1 and C with spin 0
- 3. Easy formable to any thickness at room temperature

• Up to now the maximum polarizations of D-polymer

D-polyethylene CD₂: Paramagnetic Center---Irradiation
 35% at 6.5T/1K

D.G.Crabb, Nucl. Instr. and Meth. A 526, 56 (2004)

D-Polystyrene C₈D₈ : Paramagnetic Center---D-TEMPO
 40% at 2.5 T/100mK

B.van den Brandt, et al., Nucl. Instr. and Meth. A 526, 53 (2004)

Doping methods for DNP

- Mechanism of Dynamic Nuclear Polarization Paramagnetic centers are needed
- Chemical (Tempo, Trityl radical) doping

Melting point 36⁰C Boiling point 67⁰C

Tempo (stable free radical)

Trityl radicals Finland D36

Radiation-doping of CD₂ foil

The Bochum EPR Apparatus

The Bochum DNP Apparatus

Magnet+cryostat

EPR spectra of irradiated CH₂ and CD₂ at 77K

EPR spectra of Radiation-doped CD₂

>According to HFS, 11-line pattern corresponds to 5 adjacent D, $m = 5, 4, 3 \dots - 5$

Polarization of radiation-doped CD₂

Preparation of trityl radical in D-Polystyrene

Introduce Finland D36 Radicals in C8D8

Homogenous and transparent foil (70μ m)

Polarization of Finland D36-doped C₈D₈

Mag. Field (T)	T _{build-up} (min)	T _{l,d} (min)	Microwave Freq. (GHz)	d-pol. (%)	f ⁺ -f ⁻ (MHz)
2.5	76	80(T=1.01K)	69.877	+10.2	56
			69.933	-12.5	
5.0	47	139(T=0.99K)	139.736	+29.5	92
			139.828	-31.0	
	Mag. Field (T) 2.5 5.0	Mag. Field $T_{build-up}$ (min)2.5765.047	Mag. Field $T_{build-up}$ $T_{l,d}$ (T) (min) (min) 2.5 76 80(T=1.01K) 5.0 47 139(T=0.99K)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Polarization of Finland D36-doped C₈D₈

Sample	MW (GHz)	d-pola. (%)	$T_{l,d}$ (min)	T _{build-up} (min)
d-PS(98%-d)	139.723	+56.1	863	100
+Finland D36	139.825	-61.5		

 $f_{d,NMR}$ =32.6MHz

Temperature = 400mK Magnetic field= 5.0 T

Conclusion & Outlook

- Irradiated D-polyethylene with a relative high dilution factor can be polarized to more than 30% at 2.5T/150mK. The produced paramagnetic centers have hyperfine interaction with the 5 neighboring deuterons.
- 2. Chemically doped D-polystyrene with a trityl radical can be polarized to more than 30% at 5.0T/1K and 60% at 5.0T/400mK within several hours. But the dilution factor is much lower than that of D-polyethylene.
- 3. An approach for D-polyethylene with trityl radical doping is needed.

Thanks for your attention!

Deuteron Polymer Polarization

Material	Doping		Magnetic	field(T)		Temperature	$\mathcal{T}_{\mathbf{I},\mathbf{d}}$	FWHM-bolometric
		2.5		5				
		Polariza	ation(%)				(min)	(mT)
CD2 (8.	Irradiation .0×10 ¹⁵ e ⁻ /cm ²	20	-30			150mK		
CD2 (3.	Tempo .0×10 ¹⁹ spins/cm ³	11.1 ³)	-9.3			330mK		
C8D8 (2	Tempo .3×10 ¹⁹ spins/g)	7.3	-7.7			1K	12	6.73 <mark>(2.57)</mark>
C8D8 (1.	Trityl 16× 10 ¹⁹ spins/g)	11.8	-12.3			1K	24	1.87 (2.5T)
C8D8 (1.1	Trityl 16×10 ¹⁹ spins/g)			29.5 56.1	-31.0 -61.5	1K 400mK	47 100	3.06 (5.0T)

ACKNOWLEGEMENTS

Dr.Stefan Goertz

Bonn University

Dr.Florian Piegsa

PSI Group

The Solid State Effect

EPR spectra of Finland D36-doped C₈D₈

1

2.

3.

Polarized target system

- Cooling system ~ 100mK
- Magnet system 2.50T

C-yoke normal conduction magnet 611made by JEOL)

homogeneity:

2×10⁻⁴ (ø70mm×25mm)

Microwave system 70GHz
 Oscillator: 68.5GHz-71.5GHz 150mW
 (IMPATT- 47134H-1115 made by HUGHES)

NMR measurement system
 Larmor frequency of D: 16.35MHz
 Digital Synthesizer: 1MHz-250MHz
 Accuracy: 0.1MHz

(PTS250 made by PTS inc.)

ESR linewidth and shape

Zeeman Energy of a free electron

 $E_{Z} = -g_{e}\mu_{B}\vec{S}\cdot\vec{B}$

Contributions to the Electron Zeeman linewidth

• Try radiation doping if only low μ nuclei present

DNP Mechanism $CW\&B \le 5T$

> Depend on the relationship of δ , Δ and $\omega_{\theta I}$

Solid Effect (SE) $\delta, \Delta < \omega_{0I}$ Cross effect (CE) $\delta < \omega_{0I}, \Delta > \omega_{0I}$ Thermal mixing (TM) $\delta \approx \omega_{0I}$

 δ a homogeneous EPR linewidth Δ an inhomogeneous EPR linewidth ω_{0I} the nuclear Larmor frequency

Contributions to the Electron Zeeman linewidth

Polarized Deuteron Targets Materials

Material	Doping method	Polarization	Field
⁶ LiD	Irradiation	> 50%	2.5T
D-butanol	Irradiation	55%	2.5T
		71%	5.0T
D-butanol	chem. dop.	79%	2.5T
D- propanediol	with trityl	81%	2.5T

Butanol with Porphyrexide

⁶LiD

Ammonia

Butanol with CrV

• 13 C

Introduce Trityl radical

Trityl radical as dopant for D-Butanol

Trityl radicals Finland D36

Weak g-factor anisotropy in D-Butanol

D-Butanol :

