核子スピン構造の研究の進展

第2回総合スピン科学シンポジュウム 山形大学小白川キャンパス 2011年10月16日 理研後藤雄二

核子(陽子、中性子)の内部構造

- クォーク
 - 静的なクォーク模型ではクォークのスピンから核子の磁気能率を説 明する
 - 電子ビームによる核子の深非弾性散乱 (Deep Inelastic Scattering = DIS)実験

- MIT-SLAC実験(1969, Friedman, Kendall, Taylor)
- ・ 大角度散乱 = 陽子の中の点状の構成要素(パートン)
- クォーク・パートン模型(Quark Parton Model = QPM)
- ・ グルーオン
 - 量子色力学(Quantum Chromo Dynamics = QCD)による記述
 - グルーオンはクォーク間の力を媒介するゲージ粒子

- クォークとグルーオンが閉じ込められている
- 高エネルギー陽子衝突実験(例えばLHC実験)の基礎
 - 陽子中のクォーク、グルーオン(まとめてパートンと呼ぶ)が反応の始 状態
 - パートンの陽子内部での分布はパートン分布関数(PDF)として「知っている」
- 本当に「知っている」のか?
 - 核子のQCD(量子色力学)による理解
 - QCDの検証 ⇔ QCDで理解できない現象があるか?

核子構造研究の目的(その1)

- 核子:閉じ込められたクォーク、グルーオンの力学を 研究できる最も単純な多体系
- 単純なパートン描像
 - 互いに独立(coherent)なパートン(クォーク、グルーオン)から成る核子
 - パートン分布関数(PDF)で記述される

Q.1 スピンパズルの解明

- 核子スピン1/2の起源は何か?
 - 静的なクォーク模型ではクォークのスピンから核子の磁 気能率を説明する
 - 偏極深非弾性散乱(DIS)実験はクォークのスピンでは核 子スピンを説明できないことを示した
 - CERN-EMC実験
 - 偏極ミューオンビームを偏極標的に入射
 - 非対称度を測定
 - その後のSLAC/CERN/DESY/JLabでの実験
 - ・ クォークスピンの寄与は約25%しかない

- 残りは、グルーオンと軌道角運動量の寄与である

 $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta g + L$ 軌道角運動量 2 2 グルーオンスピンの寄与 クォークスピンの寄与

Q.1 スピンパズルの解明

- "縱"偏極実験
 - ビーム軸または衝突軸方向に偏極

- 偏極DIS実験
- 偏極semi-inclusive DIS (SIDIS)実験
 - SLAC/CERN/DESY/JLab
- f_a がPDF(パートン分布関数)、つまり核子構造を表す関数

HERMES実験@DESY

- 偏極内部ガス標的
 - 水素、重水素、偏極度~85%
 - ³He、偏極度~50%
- 偏極電子/陽電子ビーム
 - 27.5 GeV、偏極度~55%

CERN-NA47
 - 北地区、フランス側

COMPASS実験@CERN

• 偏極標的

- ⁶LiD標的、偏極度~50%
- NH3標的、偏極度~80%

• 偏極 μ⁺ ビーム

- 160 GeV、偏極度~80% trigger-hodoscopes

2011年10月16日

11

Q.1 スピンパズルの解明

- "縱"偏極実験
 - ビーム軸または衝突軸方向に偏極

- 偏極陽子衝突実験
 - BNL-RHIC
- f_a 、 f_b がPDF(パートン分布関数)、核子構造を表す関数

• $h = \pi$, jet, γ , heavy-flavor, ...

アメリカ、ロングアイランド

RHIC@BNL

• 高エネルギー重イオン&偏極陽子コライダー

PHENIX実験とSTAR実験@BNL

Q.1 スピンパズルの解明

• QCDグローバル解析

- クォークスピンの寄与:ΔΣ~25%

Q.1 スピンパズルの解明

QCDグローバル解析 - グルーオンスピンの寄与:0.05 < x < 0.2の範囲で∆G(x)

に大きな制限が与えられた

核子構造研究の目的(その2)

- 単純なパートン描像を超えた核子(ハドロンおよび原子核)構造
 - パートンの量子多体相関の記述
 - ・ パートンの核子内部での他のパートンとの間の相互作用
 - ・ パートンは核子内部で運動(軌道角運動)している
 - 軌道角運動量を含めなければ核子スピンの理解も不可能
- 核子構造の多次元での記述
 - PDFの拡張、一般化
 - Transverse-momentum (k_T)依存性

"横"方向の分布

・ 空間分布(トモグラフィー)

SSA (Single-Spin Asymmetry)、 方位角依存性の測定

Q.2 横偏極現象の解明

- TMD (Transverse-Momentum Dependent) 分布
 関数の測定
 - パートン間の独立(incoherent)な散乱では、大きなSSA
 を説明できない
 - パートン間の量子的多体相関の研究
- TMD分布関数
 - Sivers分布関数
 - 横偏極核子内部でのパートンの横方向の運動量分布
 - Boer-Mulders分布関数
 - 核子内部での横偏極パートンの横方向の運動量分布

- 核子内部の"LS力"

Q.2 横偏極現象の解明. Anselmino, et al.

• QCDグローバル解析

- Semi-inclusive DIS (SIDIS)実験でSivers効果と Collins効果を分離して測定

Q.3 核子の3次元構造と軌道角運動量

GPD(Generalized Parton Distribution) 関数の測定
 – 形状因子とPDFを包含した概念

Form Factors (FFs)

Parton Distribution Functions (PDFs) Generalised Parton Distributions (GPDs)

- Jiの和則から軌道角運動量
 の導出
 - 核子スピンへの軌道角運動量 の寄与を実験的に分離して導 出する曖昧さのない手段

$$\frac{1}{2} = J_q^z + J_g^z = \frac{1}{2} \sum_q \Delta q + \sum_q L_q^z + J_g^z$$
$$J_q^z = \frac{1}{2} \sum_q \Delta q + \sum_q L_q^z$$
$$J_q^z = \frac{1}{2} \left(\int_{-1}^1 x \, dx \left(H^q + E^q \right) \right)_{t \to 0}$$

リリノ们則

r

Q.3 核子の3次元構造と軌道角運動量

レプトン+核子散乱によるGPD関数の測定
 – DVCS(Deeply-Virtual Compton Scattering)過程
 – HEMP(Hard Exclusive Meson Production)過程

将来の目標:横偏極現象の解明

- 今後5年から10年の目標
 2013年以降、2020年頃までの中心課題
- ・ 偏極SIDISと偏極Drell-Yanの比較
 - e+p実験とp+p実験を結びつける重要な比較

将来の目標:横偏極現象の解明

- 偏極SIDISと偏極Drell-Yanの比較
 e+p実験とp+p実験を結びつける重要な比較
 - TMDフレームワークの確立のための最重要課題
 - ・ Sivers分布関数の符号の逆転
 - ・ 終状態/始状態相互作用の役割り

将来の目標: 横偏極現象の解明

- 日本グループ参加の偏極Drell-Yan実験
 - COMPASS
 - RHIC collider
 - Fermilab(RHIC/J-PARC?)

experiment	particles	energy	x1 or x2	luminosity			
COMPASS	π [±] + p↑	160 GeV √s = 17.4 GeV	x2 = 0.2 - 0.3	$2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$			
COMPASS (low mass)	π [±] + p↑	160 GeV √s = 17.4 GeV	x2 ~ 0.05	$2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$			
PAX	p↑ + pbar	collider √s = 14 GeV	x1 = 0.1 - 0.9	$2 \times 10^{30} \mathrm{cm}^{-2} \mathrm{s}^{-1}$			
PANDA (low mass)	pbar + p↑	15 GeV √s = 5.5 GeV	x2 = 0.2 - 0.4	$2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$			
J-PARC	p↑+p	50 GeV √s = 10 GeV	x1 = 0.5 - 0.9	10 ³⁵ cm ⁻² s ⁻¹			
NICA	p↑+p	collider √s = 20 GeV	x1 = 0.1 - 0.8	10 ³⁰ cm ⁻² s ⁻¹			
RHIC PHENIX Muon	p↑+p	collider √s = 500 GeV	x1 = 0.05 - 0.1	$2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$			
RHIC Internal Target phase-1	p↑+p	250 GeV √s = 22 GeV	x1 = 0.2 - 0.5	$2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$			
RHIC Internal Target phase-2	p↑+p	250 GeV √s = 22 GeV	x1 = 0.2 - 0.5	3×10^{34} cm 2 s 1			

SeaQuest実験の偏極Drell-Yan実験への拡張

@RHIC
 IP2 (overplotted on BRAHMS)

29

SeaQuest実験の偏極Drell-Yan実験への拡張

将来の目標:核子の3次元構造と軌道角運動量

- ・ 今後20年以内の目標、中心課題
- レプトン+核子散乱によるGPD関数の測定
- ・タイムライン
 - COMPASS/JLab(2015年以降)からEIC/LHeC(2020年 以降)へ
- (偏極)e+p collider & e+A collider
 - HERA-IIIをより高いluminosity、同程度の衝突エネル ギーで実現する
 - 小さいx領域の物理
 - ・核子の3次元構造
 - ・スピンパズル
 - ・電弱相互作用/BSMの物理

eRHIC@BNL

電子リング(ERL)を新設

まとめ

- スピンパズルの解明
 - クォークスピンの寄与、グルーオンスピンの寄与
 - 軌道角運動量を含めた理解が求められている
- 横偏極現象の解明
 - TMD分布関数/破砕関数/...
 - 今後5年~10年の中心課題
 - 偏極Drell-Yan実験
 - 偏極SIDIS実験との比較、TMD分布関数の確立
- ・核子の3次元構造と軌道角運動量
 - 今後20年以内の中心課題
 - GPD関数の測定、Jiの和則から軌道角運動量の導出
 - レプトン+核子散乱実験

Backup Slides

- Key Questions
 - Q.1 スピンパズルの解明
 - ・核子スピン1/2の起源は何か?

 $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta g + L$ 軌道角運動量 グルーオンスピンの寄与 クォークスピンの寄与

- Q.2 横偏極現象の解明
 - Transverse-momentum (*k_T*) 依存性
- Q.3 核子の3次元構造
 - ・ 空間分布(トモグラフィー)
- Key Words
 - 軌道角運動(量)

小さいx領域、大きいx領域の核子構造
 パートン(主にグルーオン)密度の飽和(小さいx領域)

スピンパズルの解明

- 最近の成果
 - クォークスピンの寄与
 - Wボソン生成によるフレーバーを選択したクォーク、反クォークの 偏極測定開始

スピンパズルの解明

0.3

0.2

0.1

0

-0.1

-0.2

15

10

5

0

(b).

0.2

 $\Delta \chi_i^2$

-1

-0.2

х

PHENIX

STAR

SIDIS

· · DIS

Û. $\Delta g^{1, [0.05-0.2]}$

- 最近の成果
 - *p*₇分布
 - High-p_TでTwist-3の効果
- 将来の偏極Drell-Yan実験へ向けて

- 反クォーク分布のフレーバー非対称性
 最近の成果
- 小さいx領域の構造関数
- 大きいx領域の構造関数
- 破砕関数の測定
- ・ 形状因子の測定

• Lattice QCD による軌道角運動量 $-L_u + L_d$ は小さい?

- 有効理論、有効模型
- AdS/CFT

将来の目標:核子の3次元構造と軌道角運動量

- 今後20年以内の目標(2030年頃まで)
- レプトン+核子散乱によるGPD関数の測定
 Electron lon Colliders

Design Goals for Colliders Under Consideration World-wide

	Energies	s	Design Luminosity			
(M)EIC@JLab	Up to 11 x 60+	240-3000	Close to 10 ³⁴			
Future ELIC@JLab	Up to 11 x 250 (20? x 250)	11000 (20000?)	Close to 10 ³⁵			
Staged MeRHIC@BNL	Up to 5 x 250	600-5000	Close to 10 ³⁴			
eRHIC@BNL	Up to 20 x 325 (30 x 325)	26000 (39000)	Close to 10 ³⁴			
ENC@GSI	Up to 3 x 15	180	Few x 10 ³²			
LHeC@CERN	Up to 150 x 7000	4200000	Close to 1033			

Present focus of interest (in the US) are the (M)EIC and Staged MeRHIC versions, with s up to ~3000 and 5000, resp.

11

タイムライン

EIC Realization Imagined

Activity Name	2010	2011	2012	2013	2014	201 5	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
12 Gev Upgrade																
FRIB																
EIC																
Physics Case																
NSAC LRP																
CD0																
Machine																
Design/R&D																
CD1/D'nselect																
CD2/CD3																
Construction																

Jefferson Lab