第2回総合スピン科学 2011.10.15 シンポジウム

過渡Nernst-Ettingshausen効果測定による Dirac fermionのヘリカル性(カイラル性)の解明

山形大学理学部物理学科 佐々木 実 大西 彰正 北浦 守

目次

1. 序論

- 1.0 電子のスピン偏極
- 1.1 Dirac電子
 - 1.1.1 Dirac電子について
 - 1.1.2 通常の電子とDirac電子
- 1.1.3 様々なDirac電子系
- 1.2 量子ホール系のカイラル性
- 1.3 Dirac電子のヘリカル性
 - 1.3.1 Dirac電子のヘリカル性

2. 過渡現象測定法

- 2.1 Transient thermoelectric effect (TTE)
- 2.2 Nernst-Ettingshausen effect (TNE) 2.2.1 TNE法
 - 2.2.2 Helicity of Dirac fermions
 - 2.2.3 Mask configurations

2.3 Phase diagram of BiSb system

- 3. 結果および考察
 3.1 抵抗率
 3.2 TNE測定結果
 3.2.1 半金属Biの結果
 3.2.2 3次元Dirac電子系の結果
 3.2.3 2次元Dirac電子系の結果
- 4. メカニズム

5. 謝辞

6. おまけ

1.1 Dirac電子

1.1.0 電子のスピン偏極について

- 1) 通常、固体中のup-spin電子とdown-spin電子は 縮退しているが、磁場中でup-spin電子とdownspin電子の縮退は解ける(Zeeman効果)。
- 3) 磁性金属中のup-spin電子とdown-spin電子の縮 退は解けている(Stöner 効果)。
- 4) トポロジカル絶縁体表面のDirac電子は縮退して いない: ヘリカルDirac電子。

1.1.1 Dirac電子について

1) Dirac方程式に従う電子。

- 2) 線形バンド分散(linear band dispersion)を示 す特殊な物質にしか存在しない。
- 3) 通常、質量がゼロ(massless)である。
- 4)時間反転対称性のため、磁性不純物を除く不 純物による散乱が無い。

1.1.3 様々なDirac電子系

1) グラフェン:グラファイトの1層

2) BiSb混晶系

3)トポロジカル絶縁体

1.2 量子ホール系のカイラル性

- 1) 量子ホール系では、up-spin電子も down-spin電子も試料の端を同じ方向 に周回運動する。全電流密度はゼロ ではない。
- 2) 量子スピンホール系では、up-spin電子 とdown-spin電子は試料の端を互いに 反対方向を周回運動する。全電流密 度はゼロである。

量子ホール系

1.3 Dirac電子のヘリカル性

Time-reversal symmetry is broken by applied magnetic field. This gives rise to non-zero net current density.

Helicity

Dirac fermion: helicity = 1 (\equiv H1), normal electron: helicity = 0 (\equiv H0)

2. 過渡現象測定法

2.1 Transient thermoelectric effect (TTE)

Principle of TTE

Induced net charge (bipolar state)

Induced electric field

Induced TTE voltage

$$B = 0: V_{\text{TNE}} = 0,$$

$$B \neq 0: V_{\text{TNE}} \neq 0$$

2.2.2 Helicity of Dirac fermions

通常のDirac電子:同一信号

2.2.3 Mask configurations

通常のDirac電子:信号が消える
ヘリカルDirac電子:2倍に増大

2.3 Phase diagram of BiSb system

3.1 抵抗率

Semimetal and gapless region

Topological insulator region

3.2 TNE測定結果

3.2.1 半金属Biの結果

3.2.2 3次元Dirac電子系の結果

x = 3.0 %

3.2.3 2次元Dirac電子系の結果

x = 11.6 %

4. メカニズム

5. 謝辞

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0021438) and <u>also by **Institute for Integrated Spin Science** of Yamagata University. We would like to express our thanks to **Professor T. Iwata** of Faculty of Science, Yamagata University for his encouragement.</u>

6. おまけ

電子を100%スピン偏極させることは可能か?

