

液体³Heに対する能動核偏極

Oct .15. 2011

POLARIZING LIQ. ³He in LITERATURES

L.W.Engel and Keith DeConde, Phys. Rev. B **33**, 2035 (1986).

- powdered sucrose charcoal (with paramagnetic centers)
- Polarization transfer: **electron** \rightarrow ¹**H** \rightarrow ³**He**
- Small enhancement obtained
 - +18% enhancement w.r.t. TE signal amplitude at T=1.8K,B=182G
- relaxation time T₁ measured to be 1.02sec

A.Schuhl, S.Maegawa, M.W.Meisel, M.Chapellier, Phys. Rev. Lett. 54, 1952 (1985).

- **fluorocarbon beads** (paramagnetic centers produced in production process)
- Polarization transfer: electron $\rightarrow {}^{19}F \rightarrow {}^{3}He$
- Polarization enhancements observed

PSI group also performed the similar investigation. No enhancement was observed. *T.Iwata, 総合スピン科学シンポジュウム 山形大学*

Oct .15. 2011

POLARIZING LIQUID ³He by DNP

- Challenge in a different way
- Direct spin coupling between electron and ³He
- Embedding a free radical into a porous material (electron spin density controllable)
- Filled with liquid ³He
- Proceed DNP with microwave
 - \succ Porous material \rightarrow **zeolite**
 - $\succ Free radical \rightarrow TEMPO$

ZEOLITE and **TEMPO**

$Zeolite(Na_{n}AI_{n}Si_{(192-n)}O_{384}-240H_{2}O_{(n=48-76)})$

- NaY type zeolite (n=51)
 - Super Cage
 - ✓ Max dia.: 13Å
 - ✓ Window dia.: 7.4Å
 - 4.7x10¹⁹ super cages/g
 - ³He(dia.:3Å) → ≈80 ³He can get in one super cage
- TEMPO(2,2,6,6-tetramenthylpiperidinyl-1-oxyle)
 - Melting point: 36 °C
 - Boiling point: 67 °C
 - Molecule size: ~7Å

EMBEDDING TEMPO into Zeolite

- ✓ Preparation : Desiccate zeolite at 500 °C for 8 hours
- 1. Dissolve TEMPO in n-pentane
- 2. Add zeolite to n-pentane solution
- 3. Stir them for 8 hours in a sealed vessel
- 4. Evacuate n-pentane in a vacuum container

ESR OF TEMPO

 $4.5 \times 10^{18} \mathrm{spins/cc}$

Similar ESR spectra

Uniform dispersion of TEMPO molecules in zeolite

SETUP OF THE TEST

Sample cell made of PET tube (2.5cm³)

Dilution cryostat (worked as a ⁴He or ³He cryostat)

FIG. 1: Simplified diagram of the experimental setup showing A: the experimental cell; B: the ⁴He bath made of teflon; C: the copper wall to form a microwave cavity; D: a microwave guide(R-band) providing a microwave through the mylar window(H); E: a liquid ⁴He inlet;F: a 2-turn NMR coil, and G; a ³He inlet.

³He TE SIGNALs

Signal fitted by Lorentzian

Oct .15. 2011

RELAXATION TIME

Development of ³He TE signal just after ramping up the magnet to 2.5T

T=1.44K, B=2.5T, spin density: 1.3×10^{19} spin/cc relaxation time:T₁=330sec

POL. ENHANCEMENT in DNP

MW FREQ. DEPENDENCE

High concentration

fc: ESR center frequency of TEMPO(=70.22GHz)

expected ESR line width for TEMPO is 340MHz at 2.5T

A little strange behavior The line width narrower than expected

spin density: 1.3×10^{19} , B $\approx 2.5T$

The results mentioned so far have been reported in PST2008

8 MONTHS LATER

The samples had been kept in vacuum for 8 months at RT.

spin density: 4.5×10^{18} spins/cc (at previous test)

DNP test performed with the same sample

Low concentration

(previous value: $P_+=0.3\%$)

8 MONTHS LATER ...

Low concentration

MW FREQ. DEPENDENCE

fc:ESR center frequency of TEMPO (=70.177GHz)

"Solid state effect" appeared with "liquid ³He" !

CHANGE in ESR SPECTRUM

Feb.23.2007

Nov.28.2007(8 months later)

Spin density: 4.5 × 10¹⁸ spins/cc

0.93 × 10¹⁸ spins/cc

- spin density decreased : 1/5 w.r.t. previous value
 - ➔ reasonable for storage in vacuum
- However, broader ESR observed
 - ➔ localization(gathering) of TEMPO ?

CHANGE in ³He TE SIGNAL

 4.5×10^{18} spins/cc, T=1.5K, B=2.5T

What happened?

Less concentration of TEMPO \rightarrow more space for ³He

 \rightarrow spin-spin interaction among ³He ? or?

SUMMARY for LIQ. ³He DNP

• Liq. ³He was polarized in DNP with direct spin

coupling between electron and ³He

- However, the obtained polarization is very small.
- Solid state effect has been observed for liquid ³He
- We still have a lot of things to be understood.
- Further systematic investigations are required.